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I. TIGHT-BINDING CALCULATIONS

A. Atomic configuration

For definiteness, we explicate the atomic configuration considered in our Communication for tight-
binding (TB) calculations. In all cases we consider the so-called carbon-carbon (CC) centered configura-
tion [S1], wherein a carbon-carbon bond is centered at origo, see Fig. S1. Note the existence of a mixture
of both zigzag- and armchair-like edge regions. In our Dirac approach we approximate this nontrivial
boundary configuration by a simple zigzag boundary. Such a treatment is justified in light of the good
qualitative agreement in the DOS of TB and Dirac ZZ treatments, see Fig. 2 of our Communication.
Additionally, as derived by Akhmerov and Beenakker, zigzag boundary conditions result generically for
non-armchair minimal lattice terminations [S2].

B. Numerical values of physical constants

In all calculations we employ a nearest-neighbor hopping energy of tab ≈ 2.8 eV. For correspondence
with results using a Dirac description we use a Fermi velocity vf =

√
3alctab/2~ ≈ 0.91 × 106 m/s, where

alc = 2.46 Å denotes the lattice constant. The resulting Fermi velocity slightly overestimates the measured
electronic-band velocity, vexp

f ≈ 1.0 × 106 m/s, deviating from the simple linear-dispersion prediction due
to the effects of many-body interactions [S3]. Nevertheless, for formal consistency within our present
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FIG. S1 CC-centered graphene disk (R = 3.5 nm, containing 1456 sites) with dangling bonds eliminated. A and B
sublattice atoms, indicated in blue and and red, respectively, are positioned symmetrically to the left and right of origo.
The presence of zigzag- and armchair-like edge regions is indicated by green and black shading, respectively.

framework, and because we choose to focus on the features associated with the Dirac Hamiltonian, we
maintain vf ≈ 0.91 × 106 m/s throughout.

The phenomenologically introduced loss rate is chosen as ~γ = 2~η = 12 meV in all calculations except
in depiction of the DOS (broadened therein for clarity and to facilitate direct comparison with bulk DOS).
This value is chosen to be in agreement with experimentally attained mobilities in graphene at a Fermi
level near 0.4 eV, see data collected in Ref. [S4].

II. DIRAC STATES IN DISKS

The Dirac equation, see Eq. (2), for uncoupled valleys κ = ±1 can be written as a two-spinor equation
Ĥκ

dψ
κ(r) = εψκ(r) which, in a polar coordinate-system (r, θ), reads as

Ĥκ
d = −i~vf

[
0 L̂−κ
L̂κ 0

]
, with L̂± = e±iθ

(
∂r ±

i
r∂θ

)
. (S1)

The corresponding solutions for systems of azimuthal symmetry take the general form [S5]:

ψκl (r, θ) = eilθ
[

f al (r)
eiκθ f blκ(r)

]
, with l ∈ Z. (S2)

A. Nonzero-energy states

The explicit form of f al (r) and f blκ(r) is readily determined after simple manipulations of Eqs. (S1) and
(S2), while enforcing regularity at the origin r = 0, yielding the spinor in Eq. (3), reproduced here for
convenience:

ψκln(r, θ) =
eilθ√
Nκ

ln

[
Jl(kκlnr)

iκJl+κ(kκlnr)eiκθ

]
, (S3)
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expressed via effective momenta kκln = βκln/R associated with nonzero energies εκln = ~ωRβ
κ
ln, where

ωR = vf/R. The normalization Nκ
ln ensures that 〈ψκln|ψ

κ
ln〉 = 1, and is generally expressible as [S6, (5.54.2)]:

Nκ
ln = πR2

∑
ζ∈{0,κ}

[
J2

l+ζ(β
κ
ln) − Jl−1+ζ(βκln)Jl+1+ζ(βκln)

]
. (S4)

For the zigzag boundary condition (ZZ BC), which enforces Jl(βln) = 0, its form is particularly simple
since Bessel zeros obey Jl−1(βln) = −Jl+1(βln) cf. the Bessel recursion relation Jl(x) = x

2l [Jl−1(x) + Jl+1(x)],
such that the zigzag normalization reduces to a valley-invariant form Nzz

ln = 2πR2J2
l−1(βln) = 2πR2Jl+1(βln).

B. Zero-energy states

For zero-energy states the two-spinor equation decouples into two separate homogeneous equations
L̂κψκa(r, θ) = 0 and L̂−κψκb(r, θ) = 0. Inserting the azimuthal form Eq. (S2) into these equations and solving
produces solutions of the form f al (r) = carκl and f bl (r) = cbr−(κl+1). Evidently, it is impossible to find
normalizable solutions to the infinite mass boundary condition (IM BC), ψκb(R, θ)/ψ

κ
a(R, θ) = ieiκθ, since

its enforcement would require simultaneously nonzero coefficients ca,b [S5].
For the ZZ BC, however, we require only ψκa(R, θ) = 0, i.e. ca = 0. Regularity at the origin imposes

conditions on the allowable l-values, which when relabeled to an integer variable ` yields the zero-energy
states φκ

`
from Eq. (4), reproduced here for convenience [S7]:

φκ`(r, θ) =
e−iκ`θ

√
N`

[
0
r`

]
, with ` = 0, 1, 2, . . . , `max, (S5)

with normalization N` = πR2(`+1)/(` + 1) [in Eq. (4) of our Communication φκ
`

is written in terms of the
dimensionless coordinate r̃ = r/R – as a consequence, the normalization constant associated with that
form is simply N` = πR2/(` + 1)]. Note that, apart from the case ` = 0, the states φκ

`
have an edge-like

quality in the sense that they are localized near r = R, with the localization increasing with `.

1. Estimate of the number of zero-energy states in a zigzag-like Dirac disk

The Dirac equation, Eq. (S1), itself offers no bound on the allowable upper value of `. Nevertheless,
such bounds can easily be introduced. For instance, the discreteness of the carbon lattice imposes a natural
upper bound on the allowable angular momentum on the order of `max ∼ R/alc [S7]. The introduction of a
more precise bound, which agrees qualitatively with the above, can be facilitated by consideration of a
result by Akhmerov and Beenakker. In particular, Ref. S2 demonstrates that the density of edge states
per unit length of zigzag edge equals approximately 1/3alc (including spin- and valley-degeneracies),
which for a disk of circumference 2πR yields a maximal number of edge states equal to Nedge

max = 2πR/3alc.
Considering the range of ` in Eq. (S5) and accounting for degeneracies, it is then apparent that `max

approximately fulfills 4(`max + 1) = Nedge
max for a zigzag disk.

Finally, we mention a heuristic modification applied in our calculations to the expression Nedge
max =

2πR/3alc. In particular, we introduce a radial offset in the estimate of Nedge
max to account for finite-size

effects and the absence of edge states in TB calculations at very small radii. Specifically we find that
Nedge

max ' 2π(R − R0)/3alc with R0 = 1.5 nm agrees well with TB calculations, see the following section,
and use this estimate in calculation of `max.

2. Localization length of zero-energy states in Dirac disk

The degree of localization of the zero-energy states of Eq. (S5) can be investigated by assigning to each
edge state of angular momentum ` a localization length δR`, defined by the criterion:∫

R−δR`≤r≤R
d2r |φκ`(r)|2 = threshold, (S6)
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FIG. S2 Total number of edge states (left), as a function of diameter, and total number of non-edge conduction-states
for a Fermi level of εf = 0.8 eV (right) for a CC-centered graphene disk. The calculation of Nedge

max includes the heuristic
offset R0 discussed in Section II.B.1.

involving a principally arbitrary threshold, which we choose as threshold = 1 − e−1. With this definition
δR` denotes the width of a two-dimensional annulus with outer radius R containing precisely 50% of
the mode-density. Combining Eqs. (S5) and (S6) one finds that δR`/R = 1 − e−1/2(`+1), i.e. that the
characteristic localization length depends exponentially on the angular momentum `.

3. Identification of edge states in tight-binding calculations

To assess the spatial character of the eigenstates of a TB calculation we introduce the participation ratio
p of a TB-state ψ [S8]

p[ψ] =

(∑
n |ψn|

2
)2

N
∑

n |ψn|
4 , (S7)

where N denotes the number of carbon atoms in the structure and ψn denotes a normalized TB-state
evaluated at carbon site n. For localized states, where only a small fraction, N0/N, of carbon sites are
occupied by the electron, we have p ∼ N0/N, while for extended states with nearly equal site occupancy
we have p ∼ 1. In practice we categorize a given state ψ as a localized edge state if p[ψ] < pcut with
pcut = 0.1 (the total number of edge states being rather insensitive to this particular choice of cutoff).
For the optically relevant energy-range |ε| . 2 eV all edge states are found near the Dirac point at zero
energy, albeit with a finite energy-spread. Additionally, a cluster of edge states is found near the van Hove
singularity at tab ≈ 2.8 eV which is not included in the count.

We summarize the considerations of Sections II.B.1 and II.B.3 in Fig. S2, wherein we plot the number
of edge states in a zigzag Dirac treatment with cutoff `max and as estimated from a TB-treatment using
the participation ratio. Additionally, we also plot the number of non-edge conduction-states, i.e. states
with energy 0 < ε ≤ εf, and compare with ZZ and IM treatments, and also a bulk Dirac treatment with
conduction electron density ne = π−1(εf/~vf)2. A good agreement is observed across all approaches,
although the zigzag Dirac treatment slightly underestimates the number of conduction electrons.

III. NON-INTERACTING DENSITY RESPONSE OF DIRAC DISK

In this section, we present analytical expressions for the non-interacting density response function for
a Dirac disk. Quite generally, we allow for the existence of nonzero-energy states ψ, see Eq. (S3), and
zero-energy states φ, see Eq. (S5). Expanding Eq. (5) yields two terms, one due to transitions between
nonzero-energy states, χ0

bulk-bulk, and one due to transitions between zero- and nonzero-energy states,



5

χ0
edge-bulk (but none from transitions between distinct zero-energy states due to Pauli blocking):

χ0(r, r′;ω) = χ0
bulk-bulk(r, r′;ω) + χ0

edge-bulk(r, r′;ω), (S8a)

χ0
bulk-bulk(r, r′;ω) = 2

∑
κlnl′n′

f κln,l′n′
εκln,l′n′ − ~(ω + iη)

ψκ†l′n′ (r)ψκln(r)ψκ†ln (r′)ψκl′n′ (r
′), (S8b)

χ0
edge-bulk(r, r′;ω) = 2

∑
κ`ln

f κ0,ln
−εκln − ~(ω + iη)

ψκ†ln (r)φκ`(r)φκ†
`

(r′)ψκl′n′ (r
′)

+ 2
∑
κ`ln

f κln,0
εκln − ~(ω + iη)

φκ†
`

(r)ψκln(r)ψκ†l′n′ (r
′)φκ`(r

′), (S8c)

where εκln,l′n′ = εκln − ε
κ
l′n′ denotes an energy difference and f κln,l′n′ = f κln − f κl′n′ a population difference

between states ψκln and ψκl′n′ , while f0 denotes a Fermi function evaluated at zero energy. The inclusion
of an explicit valley summation (κ) is unnecessary for the ZZ BC, wherein the valley-degeneracy can be
accounted for by a simple factor 2, but essential for the IM BC, where the valley-symmetry is broken. In
the following we continue to include this explicit sum for generality.

The bulk-bulk and bulk-edge expressions can be explicated by inserting the spinors from Eqs. (S3) and
Eq. (S5):

χ0
edge-bulk(r, r′;ω) = 2

∑
κlnl′n′

f κln,l′n′
εκln,l′n′ − ~(ω + iη)

ei(l−l′)(θ−θ′)

Nκ
lnNκ

l′n′

{0,κ}∑
ζµ

J
l′+µ
l′+ζ (r, r′; kκl′n′ )J

l+µ
l+ζ (r, r′; kκln), (S9a)

χ0
edge-bulk(r, r′;ω) = 2

∑
s=±1

∑
κ`ln

s f κln,0
sεκln − ~(ω + iη)

eis(κ`+l+κ)(θ−θ′)

Nκ
lnN`

(rr′)`Jl+κl+κ(r, r
′; kκln), (S9b)

where we have introduced short-hand notation for the double Bessel function:

Jtq(r, r′; k) = Jq(kr)Jt(kr′). (S9c)

Taking advantage of the azimuthal symmetry we decompose χ0(r, r′;ω) in angular components via

χ0(r, r′;ω) =

∞∑
m=−∞

χ0
m(r, r′;ω)eim(θ−θ′), (S10)

with associated parts χ0
m = χ0

m|bulk-bulk + χ0
m|edge-bulk. After some algebra [which explicitly yield selection

rules m = l − l′ for the bulk-bulk contribution, and m = s(κ` + l + κ) for the edge-bulk contribution] this
allows us to identify the angular components as:

χ0
m|bulk-bulk(r, r′;ω) = 2

∑
κlnn′

f κln,l−mn′

εκln,l−mn′ − ~(ω + iη)
1

Nκ
lnNκ

l−mn′

{0,κ}∑
ζµ

J
l−m+µ
l−m+ζ

(r, r′; kκl−mn′ )J
l+µ
l+ζ (r, r′; kκln), (S11a)

χ0
m|edge-bulk(r, r′;ω) = 2

∑
s=±1

∑
κ`n

s f κLn,0

sεκLn − ~(ω + iη)
1

Nκ
LnN`

(rr′)`JL+κ
L+κ(r, r

′; kκLn), (S11b)

where short-hand notation L = sm − κ(` + 1) is understood in the last equation.
In practical calculations we increase the maximal values of l, n, and n′ (up to an appropriate energy

cutoff) until convergence is reached. Conversely, ` is always limited by `max – incidentally, the resulting
optical properties are relatively insensitive to small variations of `max.

IV. EDGE-STATE CONDUCTIVITY

In this section we consider the derivation of Eqs. (8) and (9) from (6) assuming throughout a Dirac ZZ
treatment (and as such, we do not allow for valley dependence in energies or occupation functions). For
convenience, we reiterate the form of the local-response (LR) conductivity σ(ω) due to an x-polarized
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incident field:

σ(ω) =
2ie2ω

A

∑
νν′

( fν − fν′ )
|〈ψν|x|ψν′〉|2

εν − εν′ − ~(ω + iη)
. (S12)

Inserting spinors, Eq. (S3) and (S5), we find, in a similarity with the nonlocal treatment in Section III, a
bulk and an edge term:

σ(ω) = σ̃b(ω) + σe(ω), (S13a)

σ̃b(ω) =
2ie2ω

A

∑
κlnl′n′

fln,l′n′
εln,l′n′ − ~(ω + iη)

|〈ψκln|x|ψ
κ
l′n′〉|

2, (S13b)

σe(ω) =
4ie2ω

A

∑
κln`

fln,0εln

ε2
ln − ~

2(ω + iη)2
|〈ψκln|x|φ

κ
`〉|

2. (S13c)

Again, no term representing transitions between distinct edge-states arise, since their distribution functions
are identical and so cancel via fν − fν′ = f0 − f0 = 0.

We consider in the following just the edge term σe(ω), knowing that the term σ̃b(ω) will tend asymptot-
ically towards the bulk infinite-extent graphene conductivity σb(ω), see Section V. The transition matrix
element can be evaluated analytically and yields:

|〈ψκln|x|φ
κ
`〉|

2 a
=

π2

NlnN`

[ ∑
s=±1

δl,−κ(`+1+s)

] ∣∣∣∣∣∫ R

0
dr r`+2Jl+κ(klnr)

∣∣∣∣∣2
b
=

∑
s=±1

δl,−κ(`+1+s)
π2

N`+1+s,nN`

∣∣∣∣∣∫ R

0
dr r`+2J`+s(k`+1+s,nr)

∣∣∣∣∣2
c
=

∑
s=±1

δl,−κ(`+1+s)
π2R2(`+3)

N`+1+s,nN`
4δs,−1β

−4
`n J2

`−1(β`n)

d
= 2δl,−κ`(` + 1)R2β−4

`n , (S14)

where we highlight relevant steps in the derivation in the following (which all rely on the assumption of
application of the ZZ BC):

a. Orthogonality of azimuthal components. Additionally, normalization is valley-independent.
b. Generally Jl(x) = (−1)lJ−l(x), such that kln = k−ln and Nln = N−ln.
c. Use of the integral-identity

∫ 1
0 dr̃ r̃`+2J`+s(β`+1+s,nr̃) = 2δs,−1β

−2
`n J`−1(β`n), valid for β`n denoting the

nth zero of the Bessel function J`(x). Identity derivable from recurrence relation for the Bessel
function and the standard integral identity

∫
dx xp+1Jp(x) = xp+1Jp+1(x).

d. Inserting normalization constants N`n = 2πR2J2
`−1(β`n) and N` = πR2(`+1)/(` + 1).

Upon combining Eqs. (S13c) and (S14), evaluating the κ-sum (yielding a simple factor 2), and expressing
all energies through ε`n = ~ωRβ`n:

σe(ω) =
16ie2

π~

ω

ωR

∑
`n

` + 1
β5
`n

f`n,0

1 −
(
ω+iη
β`nωR

)2 . (S15)

In the low-temperature limit, T → 0, the occupation term reduces to f`n,0 = θ(~ωRβ`n − εf) − 1, assuming
εf > 0. With this simplification we readily find the result in Eq. (8) of our Communication.

A. Large-radius asymptotic form

Rather than deal explicitly with the details of the zeros of the Bessel function, β`n, it is convenient to
note that the summation in (8) simply runs over all energies above the Fermi-level for states with angular
momentum 0 ≤ ` ≤ `max. In the large radius limit, the energies tend to ε ' ~vfk, with k denoting a
continuous momentum, and an associated density of states D(ε) = gd|ε |/2π~2v2

f (where gd = 1 since we
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have already accounted for spin- and valley-degeneracies explicitly). Ignoring the upper limit, `max, on `,
which is reasonable in the large-disk case, this allows us to transform the sum via:

1
A

~ωRβ`n≥εf∑
`n

→ 1
2

∫ ∞

εf

dε D(ε), (S16)

where the factor 1/2 accounts for the fact that we only include terms ` ≥ 0 in the sum rather than all
l ∈ Z. The Bessel zeros are naturally converted via β`n → ε/~ωR. The remaining difficulty lies with
the factor ` + 1. We replace it by its average value at fixed energy, i.e. l + 1 → 〈l + 1〉ε , which in turn
can be approximated by 〈l + 1〉ε ' ξε/~ωR, where ξ denotes a proportionality constant ξ = 4/3π, see
Section IV.A.1.

Introducing these considerations into Eq. (8) then allows us to derive (9):

σ∞e (ω) =
−16ie2

π~

ω

ωR

ξ(~ωR)2

4

∫ ∞

εf

dε
1
ε3

1

1 −
[
~(ω+iη)

ε

]2

= −ξ
4ie2

π
~ωωR

∫ ∞

εf

dε
1

2ε2

[ 1
ε − ~(ω + iη)

+
1

ε + ~(ω + iη)

]
= −ξ

2ie2

π
~ωωR

∫ ∞

εf

dε
1
ε2

[
P

( 1
ε − ~ω

)
+ P

( 1
ε + ~ω

)
+ iπδ(ε − ~ω) − iπδ(ε + ~ω)

]
= ξ

2e2

π~

ωR

ω

[
i ln

∣∣∣∣∣ ε2
f − ~

2ω2

ε2
f

∣∣∣∣∣ + πθ(~ω − εf)
]
, (S17)

where we have used the identity 1
x±iη = P 1

x ∓ iπδ(x) valid for η→ 0+, and that {εf, ω} > 0.

1. Evaluation of proportionality constant ξ

The value of ξ can be determined by considering initially the average value of `. Suppose that the
probability of finding a Bessel zero J`(β`n) = 0 near some value ε/~ωR is given by P`(ε), and that the
maximal `-value (after which all P`(ε) = 0) is L, then:

〈`〉ε =

∑L
`=0 P`(ε)`∑L
`=0 P`(ε)

. (S18)

Evaluating this expression is straight-forward numerically. Specifically, using the following recipe one
can estimate the probability P`(ε):

1. For fixed energy ε, and small energy-interval ∆ε, find all zeros, b j, of the Bessel function J`(x) in the
interval x ∈ [ε − 1

2 ∆ε/2, ε + 1
2 ∆ε]/~ωR for all ` = 0, 1, . . . , L. Denote this set as B = {b1, b2, . . . , bM},

with M denoting the cardinality of the set.

2. Let #`(B) denote the number of zeros in B of order `. The probability is then P`(ε) = #`(B)/M.

Having computed P`(ε) and thereby 〈`〉ε the value of ξ follows upon comparison with the ansatz
〈` + 1〉ε = 〈`〉ε + 1 ' ξε/~ωR. In Fig. S3 we show computed values of P`(ε), averaged across bins. A
clear trend is evident and indicated in dashed blue; the probability is approximately of the form P`(ε) '
A

√
1 − `2/L2, with A being an undetermined scaling. With this form of the probability, we can approximate

the expression in Eq. (S18) through the continuum limit via 〈`〉ε '
[∫ L

0 d` P`(ε)`
]/[∫ L

0 d` P`(ε)
]
, where we

treat ` now as a quasi-continuous variable. Evaluating this expression yields 〈` + 1〉ε ' 〈`〉ε ' 4
3πL (where

the approximate equivalence of 〈` + 1〉ε and 〈`〉ε follows from our assumption of large ε/~ωR). Finally, we
note that L ' ε/~ωR, as is also evident from Fig. S3

(
this is asymptotically true for large L, since the first

zero, β`1, of J`(x), goes like β`1 ∼ ` + O(`1/3) for large `, while all zeros of differing orders are bounded
by β`,1 < β`+1,1 < . . .[S9, (10.21.2) & (10.21.40)]

)
. Thus, we find analytically that 〈` + 1〉ε ' ξε/~ωR with

ξ = 4/3π. We compare the numerical and analytical estimates in Fig. S3 and find excellent agreement
across a wide range of ε/~ωR, improving with larger effective energies.



8

P
ℓ
(ǫ

)

ℓ

P
ℓ (ǫ) ∝ √

1−
ℓ 2

L 2

0 200 400 600 800 1000

0

20

40

60

80

ξ

ǫ/~ωR

〈ℓ
+

1
〉 ǫ

ǫ/~ωR

200 400 600 800 1000 1200

200 400 600 800 1000 1200

0.41

0.42

0.43

0.44

0

100

200

300

400

500

FIG. S3 Numerical and analytical considerations of the probability P`(ε) and the proportionality constant ξ. Left:
Probability P`(ε) calculated numerically for ε/~ωR = 1000 and ∆ε/~ωR = 25 with adjoining `-values collected in
bins of size 10. Indicated in dashed blue is a fit P`(ε) = A

√
1 − `2/L2, with L denoting the maximal `-value of the

computed Bessel zeros. Right: The average value 〈` + 1〉ε as a function of ε/~ωR, computed numerically using
Eq. (S18) with ∆ε/~ωR = 25 and analytically via 〈` + 1〉ε ' ξε/~ωR with ξ = 4/3π, in gray markers and dashed blue,
respectively. Inset shows computed values of ξ for different effective energies compared with the value 4/3π.

V. LOCAL-RESPONSE BULK CONDUCTIVITY

For completeness, and for comparison with the result for the edge-state conductivity, we here also give
the local-response bulk conductivity, σb(ω), utilized in Fig. 4 of our Communication. At finite temperature,
T , the local-response intra- and interband conductivity terms in σb(ω) = σintra(ω) + σinter(ω) are [S10]:

σintra(ω) = σ0
8ikbT

π~(ω + iγ)
ln

[
2 cosh

(
εf

2kbT

)]
, (S19a)

σinter(ω) = σ0

[
H(~ω/2) +

4i~(ω + iγ)
π

∫ ∞

0
dε

H(ε) − H(~ω/2)
~2(ω + iγ)2 − 4ε2

]
, (S19b)

where γ = 2η denotes the optical loss-rate, σ0 ≡ e2/4~ is a characteristic conductive magnitude, and

H(ε) = f (−ε) − f (ε) =
sinh(ε/kbT )

cosh(εf/kbT ) + cosh(ε/kbT )
, (S19c)

denotes a population difference. Following the prescription in Refs. S11 and S12 we have included
phenomenological loss in both intra- and interband terms via γ. In the low-loss, low-temperature limit
the terms are particularly simple, and especially the interband term is mathematically quite evocative of
σ∞e (ω) from Eq. (S17):

σintra(ω) γ,T=0
= σ0

4iεf
π~ω

, σinter(ω) γ,T=0
= σ0

[
i
π

ln

∣∣∣∣∣∣2εf − ~ω2εf + ~ω

∣∣∣∣∣∣ + θ(~ω − 2εf)
]
. (S20)

VI. LINEARIZED HYDRODYNAMIC MODEL FOR GRAPHENE

In this section we discuss the use of an approximate hydrodynamic model for graphene, and compare
with the results of a small-momentum expansion of the bulk graphene density response from RPA. We
also show numerically that absorption spectra calculated using Eq. (S11a) with Dirac IM states agree
excellently with predictions of a hydrodynamic description in the large radius limit.
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A. Formulation of model and comparison with bulk RPA

Linearized hydrodynamic descriptions, recently widely applied to metallic systems, relate the induced
current J and the electric field E. For graphene, due to its two-dimensional nature, only the in-plane com-
ponents of the electric field, E‖, and the surface-current K are of relevance. In this case, the hydrodynamic
equivalent of Ohm’s law (neglecting loss for the nonce) reads as [S13]:

K(r, ω) +
β2

ω2∇‖
[
∇‖ ·K(r, ω)

]
= σ(ω)E‖(r, ω), (S21)

where σ(ω) is a local conductivity, and β a plasma velocity.
It is instructive to consider the resulting hydrodynamic conductivity in momentum space for longitudinal

excitations K(k, ω) = σl
h(k, ω)E‖(k, ω) where k ‖ E‖:

σl
h(k, ω) = σ(ω)

/(
1 − β2 k2

ω2

)
' σ(ω)

(
1 + β2 k2

ω2

)
, (S22)

assuming k � ω/β. The values of β and σ(ω) appropriate for graphene, can be discerned by comparison
with the small-momentum expansion of the low-temperature nonlocal conductivity for bulk graphene
σ0(k, ω), whose full expression reads as [S14; S15]:

σ0(k, ω) =
ie2

π~

ω̃

k̃2

{
− 2 + 1

4 F(k̃, ω̃)
[
W

(2 + ω̃

k̃

)
−W

(2 − ω̃
k̃

)]}
, (S23a)

F(k̃, ω̃) =
k̃2

√
ω̃2 − k̃2

, W(x) = x
√

x2 − 1 − ln
(
x +
√

x2 − 1
)
, (S23b)

expressed in terms of normalized momenta and frequencies k̃ = k/kf and ω̃ = ~ω/εf. A series expansion
of this expression yields (assuming ω̃ < 2 to restrict the study to regions without Landau damping):

σ0(k, ω) =
ie2

π~

εf
~ω︸ ︷︷ ︸

σintra(ω)

[
1 + β2

intra(ω)
k2

ω2

]
+

ie2

4π~
ln

(2εf − ~ω
2εf + ~ω

)
︸                 ︷︷                 ︸

σinter(ω)

(
1 + β2

inter
k2

ω2

)
, (S24a)

where we have indicated association with the usual local-response conductivities. The plasma velocities
for the intra- and interband terms are given by:

β2
intra(ω) =

{
3
4
−

[ 1
4(εf/~ω)2 − 1

]2}
v2
f
~ω.εf
' 3

4 v2
f , β2

inter = 1
2 v2

f . (S24b)

Evidently, an appropriate hydrodynamic treatment would require a two-fluid model, accounting for the
difference in plasma velocities for the intra- and interband terms. Nevertheless, a one-fluid model is
reasonable, since the interband-term - and hence its nonlocal correction - is small compared to the intraband
term. Hence, upon also ignoring the frequency-dispersion of βintra (reasonable for disks in the large radius
limit where the plasmonic resonances lie below the Fermi level), we find that Eq. (S21) with β2 = 3

4 v2
f and

σ(ω) = σintra(ω) + σinter(ω) provides a reasonable accounting for the lowest order nonlocal corrections of
the electronic plasma response.

In calculations we also account approximately for relaxation in the nonlocal part of Eq. (S21), with a
rate γ, by introducing the substitutions β2 → ω

ω+iγβ
2 [S16; S17].

B. Comparison of hydrodynamics and RPA with Dirac IM states

In Fig. S4 we show computational results for graphene disks of varying diameter. Very good agreement
between RPA with Dirac IM states and a hydrodynamic description based on the bulk conductivity σb(ω)
is obtained, apart from the smallest considered diameter. Since RPA with Dirac IM states fully accounts
for the effects of nonlocality, but completely neglects the presence of edge states, this underlines the
excellent description of nonlocality by a simple hydrodynamic model with β2 = 3

4 v2
f .
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FIG. S4 Absorption cross-sectional efficiency in graphene disks, with εf = 0.4 eV, ~γ = 12 meV, and T = 300 K and
varying diameter (indicated above each spectra). Spectra calculated from local-response with bulk conductivity σb(ω),
from hydrodynamic response with bulk conductivity (indicated in legend as [σb]h(ω)), and from RPA with Dirac IM
states. A pole approximation for the spectral position of the hydrodynamic resonances is also indicated, see Eq. (S35).
Spectra from different disk diameters are offset by 0.5.

VII. ELECTROSTATIC INTERACTION IN LOCAL-RESPONSE NANODISK

A complete solution of the electrostatic problem in a two-dimensional conductive disk, accounting also
for a hydrodynamic interaction in the form of Eq. (S21) and screening due to nearby grounded planes, was
offered by Fetter in Ref. S18. For convenience, we repeat here the most important steps of the derivation as
relevant to our case (i.e. in the absence of grounded planes). Throughout we suppress explicit declaration
of frequency dependence.

The electrostatic potential, φ(r), is governed by the Poisson equation with a charge number density
ρ(r) = δ(z)ρ‖(r‖), where ρ‖(r‖) indicates the induced in-plane charge density in the graphene sample. For a
disk ρ‖(r‖) = ρ‖(r, θ) which vanishes for r > R. Thus;

∇2φ(r) = −
1

ε0ε(r)
δ(z)ρ‖(r, θ), (S25)

where we allow for a dielectric background above and below the disk via ε(r) = ε+θ(z) + ε−θ(−z) [and
ε(r‖, z = 0) = 1

2 (ε+ + ε−) ≡ εb].
Due to the azimuthal symmetry of the disk, the potential can be decomposed in cylindrical coordinates

via φ(r) = φ‖(r)φ⊥(z)eilθ [with φ⊥(0) ≡ 1], and similarly for the charge density ρ‖(r‖) = ρ‖(r)eilθ [we
suppress explicit indication of the l-dependence of φ‖(r), φ⊥(z), and ρ‖(r) in the following, and assume
it implicitly understood]. Carrying out an l-order Hankel transform of Eq. (S25) in coordinate r allows
solving for φ⊥(z), which, through use of the boundary conditions for the potential, allows a relation
between the Hankel transformed in-plane potential and charge density. By an inverse l-order Hankel
transform of this relation one arrives at:

φ‖(r̃) =
R

2ε0εb

∫ 1

0
dr̃′ Kl(r̃, r̃′)ρ‖(r̃′)r̃′, (S26)

with kernel Kl(r̃, r̃′) ≡
∫ ∞

0 dp Jl(pr̃)Jl(pr̃′), written in terms of normalized radial coordinates r̃ = r/R.
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Similarly, we can derive an additional relation between φ‖ and ρ‖ by considering the hydrodynamic
constitutive equation of Eq. (S21), which in the electrostatic limit is equivalent to(

1 + k−2
nl∇

2
‖

)
ρ‖(r‖) = iω−1σ∇2

‖
φ‖(r‖), (S27)

with knl = ω/β, valid for r < R. The point at r = R requires special attention: it can either be
accounted for by including a Dirac delta term, ∼ δ(r − R), in the constitutive equation, or by imposing a
boundary condition at the edge. The boundary conditions of relevance is the no-spill current condition
r̂ ·K(r = R, θ) = 0 and the boundedness of φ‖(r) and ρ‖(r). The no-spill condition can be converted to a
condition on φ‖(r = R) and ρ‖(r = R) by projecting on Eq. (S21).

Following this approach we can solve Eq. (S27) for φ‖(r̃) by using a Green function to account for the
boundary condition, resulting in:

φ‖(r̃) = −iωσ−1k−2
nl ρ‖(r̃) + iωσ−1R2

∫ 1

0
dr̃′Gl(r̃, r̃′)ρ‖(r̃′)r̃′, (S28)

where Gl(r̃, r̃′) = (2l)−1[(r̃r̃′)l + (r̃</r̃>)l] [with r̃< = min(r̃, r̃′) and r̃> = max(r̃, r̃′)] is a Green function
defined by ∆l

bG(r̃, r̃′) = −r̃−1δ(r̃ − r̃′) subject to ∂r̃G(1, r̃′) = 0 and boundedness for {r̃, r̃′} ∈ [0, 1] (where
∆l
b denotes the Bessel differential operator of order l acting on r̃) [S19, Section 43]. Here we have

implicitly assumed that l , 0: the case of axisymmetric modes requires a separate treatment, due to the
necessity of introducing an additional boundary condition which ensures that the total induced charge
vanishes, see Ref. S18.

By combining Eqs. (S26) and (S28) self-consistent equations for either the in-plane potential or charge
density can be found - which, in the latter case, offers:

β2

R2 ρ‖(r̃) − ω2
∫ 1

0
Gl(r̃, r̃′)ρ‖(r̃′)r̃′ + Ω2

0(ω)
∫ 1

0
Kl(r̃, r̃′)ρ‖(r̃′)r̃′ = 0, (S29)

where Ω2
0(ω) ≡ −iωσ(ω)/2ε0εbR is a characteristic round trip frequency associated with traversal of the

disk at a velocity defined by σ(ω) and εb. The solution of this integral equation gives the eigenmodes, ωn
and ρ‖n(r), of the disk for modes of angular momentum l.

A. Reduction to matrix eigenvalue problem by polynomial expansion

Rather astonishingly, the complicated integral equation in Eq. (S29) can be reduced to a matrix
eigenvalue problem with analytical matrix elements. This fact was demonstrated in Ref. S18, by use of an
expansion in a complete set of Jacobi polynomials {Pl,0

j (1 − 2r̃2)}∞j=0:

ρ‖(r̃) = r̃l
∞∑
j=0

c jP
l,0
j (1 − 2r̃2). (S30)

The reduction to a matrix equation is achieved by juxtaposing xl+1Pl,0
k (1 − 2r̃2) onto Eq. (S29) and

integrating over r̃, which, after utilizing the orthogonality of Jacobi polynomials, yields an algebraic
equation

∑∞
j=0

[ β2

R2 Djk − ω
2G jk + Ω2

0(ω)K jk]c j = 0. Truncating to some cutoff { j, k} = 0, 1, . . . , J allows
reformulating this as a J × J matrix equation:[

β2

R2 D − ω2G + Ω2
0(ω)K

]
c = 0, (S31a)
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where the matrix elements can be evaluated exactly and take the form:

Djk =
δ jk

2(l + 2 j + 1)
, (S31b)

G jk =
δ j0δk0

8l(l + 1)2 +
δ jk

4(l + 2 j)(l + 2 j + 1)(l + 2 j + 2)
+

δ j+1,k + δ j,k+1

8(l + 2 j + 1)(l + 2 j + 2)(l + 2 j + 3)
, (S31c)

K jk =
(−1)k− j+1

π
[
4(k − j)2 − 1

]
(l + k + j + 1

2 )(l + k + j + 3
2 )
. (S31d)

1. Eigenmode resonance frequencies in local-response

In the absence of nonlocality the matrix equation reduces to a generalized eigenvalue problem Kcn =

ζnGcn with eigenvector cn and eigenvalues ζn = ω2
n/Ω

2
0(ωn). The resonances can thus be categorized by

the value of ζn. In particular, the electrostatic resonances are thus governed by:

ωn

σ(ωn)
=

ζn

2iε0εbR
, (S32)

where the value of l used in construction of K and G dictates the angular momentum of the mode, while n
gives its radial quantization (n = 1, 2, . . . for singly, doubly, etc.). In Table I we summarize values of ζn for
different angular momenta and radial quantization. In the electrostatic regime, the eigenmode relevant for
plane-wave interaction in nanodisks is naturally the l = n = 1 resonance.

n l = 1 l = 2 l = 3 l = 4
1 1.0977 1.9942 2.8556 3.7032
2 4.9140 6.2455 7.5124 8.7395
3 8.1337 9.5455 10.8989 12.2117
4 11.3079 12.7592 14.1596 15.5221

TABLE I Tabulated values of ζn for eigenmodes of angular momentum l and radial quantization n. Calculated with a
cutoff of J = 250, giving fully converged results accurate to last indicated decimal.

2. Pole approximations for hydrodynamic and edge-state conductivity contributions

Assuming that the hydrodynamic response is a small perturbation we can justify making a pole approxi-
mation to assess the impact of nonlocality. Specifically, if we indicate the local-response eigenmodes by
ω0

n and c0
n the pole approximation of Eq. (S31a) becomes:[
β2

R2 D − ω2G + Ω2
0
(
ω0

n
)
K
]
cn = 0 ⇔

β2

R2 Dcn = ω2Gcn −
(
ω0

n
)2Gc0

n −Ω2
0(ω0

n)Kδcn, (S33)

where we have used that Ω2
0(ω0

n)Kc0
n = ω0

nGc0
n and also introduced the small difference δcn = cn − c0

n.
Ignoring this small difference, thereby letting c0

n ' cn, this equation can be recast as a generalized
eigenvalue problem with eigenvalues ∆n:

Dcn '
R2

β2

[
ω2

n −
(
ω0

n
)2]Gcn ≡ ∆nGcn. (S34)

Thus, within the pole approximation, the resonance frequency is approximately:

ωn =

√(
ω0

1
)2

+ ∆n
β2

R2 ' ω
0
n +

∆n

2ω0
n

β2

R2 , (S35)

where all the eigenvalues ∆n are positive, leading invariably to a blueshift of the resonance, with a strength
∼ ω2

R/ω
0
n. For the optically relevant l = n = 1 mode we find numerically that ∆1 ≈ 3.39. See Fig. S4 for
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an assessment of the accuracy of the approximation.
By a similar reasoning, the approximate impact of an edge-state conductivity σe(ω) [see Eq. (S17)] can

also be accounted for. Introducing again a pole approximation by letting σ(ωn) = σb(ωn) + σe(ωn) →
σb(ω0

n) + σe(ω0
n) in Eq. (S32), and using Eq. (S17), one finds:

ωn ' ω
0
n +

ζnσe(ω0
n)

2iε0εbR
' ω0

n +
4ζnξαg

εb

ω2
R

ω0
n

ln
∣∣∣∣∣ ε2

f − (~ω0
n)2

ε2
f

∣∣∣∣∣, (S36)

where we have introduced the effective fine-structure constant for graphene αg = e2/4πε0~vf ≈ 2.40. It is
evident that the edge-contribution leads to a redshift since Im[σe(ω0

n)] < 0 for ~ω0
n <
√

2εf. Note that the
strength of the hydrodynamic and edge-contribution corrections scale similarly, i.e. with ω2

R/ω
0
n.

B. Interaction with external potentials and the absorption cross-section

Including interaction with external potentials of definite angular momentum l is straightforward. In
particular, if φext

‖
(r̃) = r̃l ∑∞

j d jP
l,0
j (1 − 2r̃2) then the matrix system in Eq. (S31a) evolves into the inhomo-

geneous system: [
β2

R2 D − ω2G + Ω2
0(ω)K

]
c =

iωσ(ω)
R2 Dd, (S37)

The important case of the absorption cross-section, that is, the absorbed power relative to the incident
intensity of a plane wave, is similarly straightforward. In particular, considering an x-polarized plane
wave normally incident on the disk, Eext(r‖, z = 0) = E0x̂, the associated electrostatic potential φext

‖
(r‖) =

−E0x = − 1
2 E0r(eiθ + e−iθ), and thereby also the induced charge density, is dipolar, i.e. l = ±1. The dipole

moment p(ω) of the disk is just (restoring explicit frequency dependence for clarity)

p(ω) =

∫
r<R

d2r‖ r‖ρ‖(r‖, ω) = x̂2πR3
∫ 1

0
dr̃ r̃2ρ‖(r̃, ω), (S38)

where we have used that the radial charge density, ρ‖(r̃, ω)), is identical for l = 1 and l = −1. Using
the polynomial expansion of Eq. (S30) then yields a simple connection between p(ω) = p(ω)x̂ and the
expansion coefficients c(ω) [S6, 7.391.3]:

p(ω) = 2πR3
∞∑
j=0

c j(ω)
∫ 1

0
r̃3P1,0

j (1 − 2r̃2)︸                  ︷︷                  ︸
= δj0/4

= 1
2πR3c0(ω), (S39)

with c0(ω) obtained via Eq. (S37) with d j = − 1
2 E0Rδj0 and l = ±1.

Finally, we note that the quasistatic polarizability relates to the dipole moment via α0(ω) = p(ω)/ε0εbE0,
and that the absorption cross-section, neglecting retardation-corrections, relates to the quasistatic polariz-
ability via σabs(ω) = ω

c Im[α0(ω)].

VIII. ELECTROSTATIC INTERACTION IN DIRAC-RESPONSE NANODISK

The starting point for our treatment is a self-consistent equation for the induced density. In the RPA this
self-consistent equation is derived by coupling the total potential, with contributions from both external
and induced potentials φ = φext + φind, and the induced charge density ρ through the non-interacting
polarizability and a Hartree interaction:

ρ(r) = e2
∫

dr′ χ0(r, r′)φ(r′) (S40a)

φ(r) = φext(r) +

∫
dr′ V(r, r′)ρ(r′), (S40b)
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with V(r, r′) = 1/4πε0|r − r′| denoting the Coulomb interaction. Unlike in Section VII, all coordinates
and functions refer to surface quantities, since the explicit accounting for the z-dimension is unnecessary.
Combining these equations one readily finds integral equations for either the potential or the induced
charge density. For the induced charge density, as considered also in our Communication, one finds:

ρ(r) = e2
∫

dr′ χ0(r, r′)
[
φext(r′) +

∫
dr′′ V(r′, r′′)ρ(r′′)

]
. (S41)

By expanding all quantities in angular momenta,

ρ(r, θ) =

∞∑
m=−∞

ρm(r)eimθ, φext(r, θ) =

∞∑
m=−∞

φext
m (r)eimθ, V(r, r′; θ − θ′) =

∞∑
m=−∞

Vm(r, r′)eim(θ−θ′), (S42)

with χ0(r, r′) expanded already in Eq. (S10), we can decouple Eq. (S41) into separate equations for each
angular momentum:

ρm(r̃) = 2πe2R2
∫ 1

0
dr̃′ r̃′χ0

m(r̃, r̃′)
[
φext

m (r̃′) + 2πR2
∫ 1

0
dr̃′′ r̃′′Vm(r̃′, r̃′′)ρm(r̃′′)

]
, (S43)

expressed again in dimensionless coordinates r̃ = r/R. The Coulomb angular elements can be read off by
comparison with Eq. (S26) yielding Vm(r̃, r̃′) = Km(r̃, r̃′)/4πε0εbR.

The solution of this equation can be attempted e.g. via polynomial expansion - but analytical expres-
sions for the matrix elements cannot be attained. As a consequence it is desirable to pursue a simple
discretization-solution: we discretize r̃ by the set {r̃n}

Nd
n=1 ∈ [0, 1] and find good convergence for Nd = 100

in all considered cases, including in our computations also the weakly singular diagonal elements.

A. Computational complexity and comparison with RPA at tight-binding level

The primary computational hurdle in applying RPA, both in the Dirac and the TB approaches, involves
computation of χ0(r, r′) on the set of all relevant positions {r, r′}. We compare the complexity below:

Tight binding – The set {r, r′} is predetermined as all carbon-atom locations of which there are N, such
that the matrix representation of χ0 has dimensions N × N. Computation of the density-response
at each point, i.e. of χ0(rn, rn′), requires O(N2) operations [cf. the double sum

∑
νν′ in Eq. (5) of

our Communication]. As such, direct construction of χ0 in TB requires O(N4) operations – which,
however, can be reduced to O(N3) operations by using the fast Fourier transform following the
scheme suggested in Ref. [S1].

Dirac equation – As discussed in the previous section, the electrostatic problem can be decoupled into
multipolar components χ0

m (cf. the continuum-assumption of the Dirac equation) and the radial
coordinates (r, r′) can subsequently be discretized e.g. on a regular grid with Nd points. Since only
a single multipolar component, namely the m = 1 (m = −1) component is necessary for studying
interaction with plane-waves, the dimensions of the matrix representation of χ0 are just Nd × Nd.
The evaluation of χ0

0(rn, rn′) requires O(Nβ) operations, with 1 < β < 2 [cf. the reduction of state-
summations in Eq. (5) of our Communication due to the selection rules discussed in Section III],
with N here indicating the number of Dirac-states in the considered energy range (similar scaling as
in TB). Thus, direct evaluation of χ0

m requires O(N2
d Nβ).

Self-consistent electrostatic problem – In both cases, the self-consistent problem finally requires solving a
matrix equation (N×N in TB and Nd×Nd in Dirac) scaling with the third power of the dimensionality
by direct Gauss-Jordan elimination.

Since N is on the order of several thousands, while we use Nd = 100 this illustrates that application of
RPA@Dirac requires significantly less computational effort compared with RPA@TB.

Of course, solving the electrostatic problem with a local conductivity σ(ω) is vastly simpler complexity-
wise compared to RPA at any level – in particular, that problem is scale-invariant (assuming a scale-
invariant conductivity). Furthermore, applying the semi-analytical solution for nanodisks discussed in
Section VII requires only solving a J × J matrix equation with J = 250 much more than sufficient.
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FIG. S5 Identical setup as in Fig. 4 of our Communication, but with an extended range of diameters considered. As
in Fig. 4, disk-diameters are indicated above each spectra, with different diameters offset by 0.5, while individual
spectra at identical diameters are offset by 0.025.

IX. ABSORPTION SPECTRA AT INTERMEDIATE AND SMALLER DIAMETERS

In support of Fig. 4 of our Communication, we here offer additional data in Fig. S5, adding to Fig. 4
absorption spectra at intermediate diameters, as well as considering also smaller diameters. The spectra at
intermediate diameters follow the trends also observed in Fig. 4. At very small diameters, predictions of
the spectral position of resonances in both local and Dirac approaches are unable to match those of TB –
and the polarization-dependence becomes even more pronounced – highlighting the necessity for atomistic
treatments in this size-range. Nevertheless, one feature qualitatively reproduced by both edge-corrected LR
and Dirac approaches at very small diameters is a dramatically reduced absorption efficiency, not captured



16

by a bulk LR approach. This reduction sets in as the resonances move into the region of edge-to-bulk EHP
transitions. In fact, the overall reduction is slightly overestimated in Dirac and edge-corrected LR since
the Dirac approach overestimates the energy-level spacing due to assumed azimuthal and valley symmetry
which is not present in a TB treatment.

References

[S1] S. Thongrattanasiri, A. Manjavacas, and F.J. Garcı́a de Abajo, ACS Nano 6, 1766 (2012).
[S2] A.R. Akhmerov and C.W.J. Beenakker, Phys. Rev. B 77, 085423 (2008).
[S3] A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, and A.K. Geim, Rev. Mod. Phys. 81, 109 (2009).
[S4] P. Tassin, T. Koschny, and C.M. Souloulis, Science 341, 620 (2013).
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