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1. Introduction

Nonadiabatic transitions at avoided level crossings play an essential role

in numerous dynamical phenomena in physics and chemistry. They have

been studied both theoretically and experimentally in various contexts like

spin-flip processes in nano-scale magnets,1,2 molecular collisions,3 optical

systems,4 quantum-dot arrays,5 Bose-Einstein condensates,6 and recently

also in quantum information processing.7–10

The “standard” Landau-Zener problem describes the ideal situation in

which the dynamics is restricted to two levels that are coupled by a constant

tunnel matrix element and cross at a constant velocity. The quantity of

primary interest is the probability that finally the system ends up in the one

or the other of the two states. This classic problem was solved independently

by several authors in 1932.11–14

In an experiment, the two-level system will be influenced by its environ-

ment, which may affect the quantum phase of the superposition, alter the
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effective interaction between the levels, or may cause spontaneous decay.

The environment of a quantum system can often be described as a bath of

harmonic oscillators.15–19 In some situations, it is known that the dominant

environmental effects can best be modelled as a spin bath instead,20–22 for

example for molecular magnets1 and for Josephson phase qubits.7

In the presence of a heat bath, the Landau-Zener dynamics will sensi-

tively depend on the qubit operator to which the bath couples.23,24 Ao and

Rammer25 studied Landau-Zener transitions for the special case in which an

ohmic heat bath couples to the same operator as the driving and derived

the transition probabilities in the limit of high and of low temperatures.

In the limits of very fast and very slow sweeps at zero temperature, they

found that the transition probability is the same as in the absence of the

heat bath, as was confirmed by numerical studies.26,27

This zero-temperature result was recently proven to hold exactly for

arbitrary Landau-Zener sweep speeds, as a special case of an exact expres-

sion for arbitrary qubit-bath couplings and spectral densities.23 An exact

solution is also possible if the decoherence stems from the coupling of the

system to a spin bath.24

2. The Dissipative Landau-Zener Problem

The dissipative Landau-Zener problem, is specified by the system-bath

Hamiltonian

H(t) = HLZ(t) + Hq-env + Henv, (1)

where Henv and Hq-env describe the environment and its coupling to

the two-level system, henceforth termed qubit. The time-dependent qubit

Hamiltonian reads

HLZ(t) =
vt

2
σz +

∆

2
σx, (2)

which defines the “standard” Landau-Zener problem. The adiabatic ener-

gies, i.e. the eigenstates of HLZ(t) form at time t = 0 an avoided crossing

between the diabatic states |↑〉 and |↓〉. The latter are the eigenstates of

HLZ(t) at large times.

If the qubits starts at time t = −∞ in state |↑〉, one finds that finally at

time t = ∞, the qubit will be in state |↑〉 with a probability given by the

classic expression11–13

P↑→↑ = exp
(

−
π∆2

2~v

)

. (3)
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Fig. 1. Adiabatic (solid) and diabatic (dashed) energy levels of “standard” Landau-
Zener Hamiltonian (2).

In general, this transition probability is modified by a coupling to the

environment23,24 for which we assume the form Hq-env = ~σ · ~nξ, where ~n

determines the “direction” of the coupling and ξ is a collective coordinate

of the bath. In the following, we explore for which types of coupling the

opposite holds, namely that P↑→↑ still is given by Eq. (3), despite the

coupling to the bath.

3. Multi-Level Landau-Zener Dynamics

The two-level Landau-Zener problem defined by the Hamiltonian (1) can

be mapped to the multi-level Landau-Zener problem sketchetd in Fig. 2

which has been solved in Ref. 24. It is defined by the Hamiltonian

H(t) =
∑

a

(εa +
vt

2
)|a〉〈a| +

∑

b

(

εb −
vt

2
)|b〉〈b|

+
∑

a,b

(Xab|a〉〈b| + X∗
ab|b〉〈a|

)

,
(4)

which describes a group of levels |a〉 whose energy increases linearly in time,

while the energy of the levels |b〉 deceases. In the limit t → ±∞, the states

|a〉, |b〉 become eigenstates of the Hamiltonian (4), which means that they

represent the diabatic eigenstates. The off-diagonal part of the Hamiltonian

is such that it only couples states of different groups while states within

one group are uncoupled.

If now the system starts in any non-degenerate state |a〉, one can derive

for the transition to a state |a′〉 the following two statements:24 First, the
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{
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{

Fig. 2. Diabatic levels of the multi-level Hamiltonian to which we map the dissipative
Landau-Zener problem.

probability to end up in the initial state is given by

Pa→a = exp
(

−
2π〈a|X2|a〉

~v

)

, (5)

while, second, all a-states with higher energy are finally not populated, i.e.

Pa→a′ = 0 for εa′ > εa. (6)

If in particular, the initial state is the a-state with the lowest energy, re-

lation (6) implies that 1 − Pa→a denotes the probability to end up in any

state of group b.

4. Bath-Independent Landau-Zener Probability

In order to make use of the results of the last section, we have to identify

the diabatic states of the dissipative Landau-Zener Hamiltonian (1). Since

at large times, the time-dependent part of the Hamiltonian dominates, the

diabatic qubit states are the eigenstates of σz , |↑〉 and |↓〉. The bath states

corresponding to |↑〉 are determined by the Hamiltonian

Henv↑ = 〈↑|~n · ~σ|↑〉ξ + Henv = nzξ + Henv (7)

and will be denoted by |ν+〉 with |0+〉 being the ground state. Thus the

states |↑, ν+〉 correspond to group a while the accordingly defined states

|↓, ν−〉 form group b. The coupling operator X then becomes

X =
∆

2
σx + (nxσx + nyσy)ξ. (8)

Note that nzσzξ does not couple states from different groups and, thus, is

not contained in X .
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At zero temperature, the natural initial state of the qubit coupled to

the bath is the diabatic state |↑, 0+〉, which is the ground state in the limit

t → −∞. Since Eq. (6) implies that all states |↑, ν+〉 with |ν+〉 6= |0+〉 will

finally be unoccupied, we find

P↑→↑ =
∑

ν+

P↑,0+→↑,ν+
= exp

(

−
2π〈↑, 0+|X

2|↑, 0+〉

~v

)

, (9)

where the coupling operator X is given by Eq. (8).

A particular case is now ~n = ~ez for which X = ∆
2
σx, such that the bath

couples only via the Pauli matrix that determines the diabatic states. Then

〈↑, ν+|(
∆
2
σx)2|↑, ν+〉 = ∆2/4 and, consequently, the transition probability

for a diabatic transition in the presence of a heat bath at zero temperature,

Eq. (3), becomes identical to the “standard” Landau-Zener result (9). This

result holds true at zero temperature whenever the bath couples to the qubit

via σz , irrespective of the nature and the spectral density of the bath.

An important experimentally relevant case for which this prediction

applies is the measurement of tiny tunnel splittings ∆ in nanomagnets1 for

which laboratory experience tells us that at temperatures well below 1K,

Landau-Zener tunneling is robust against dephasing. Recent theories2 for

multiple Landau-Zener transitions in such systems presumed that during

the individual Landau-Zener transitions, dephasing does not play a role,

which is in accordance with our results. Our results show that these theories

should be more widely applicable than guessed previously.

5. Conclusions

We have investigated the dissipative Landau-Zener problem for a qubit with

a qubit-bath coupling that commutes with the time-dependent part of the

qubit Hamiltonian. For large time, this bath coupling causes pure dephas-

ing, while it can induce spin flips at the center of the avoided crossing of the

adiabatic levels. As a central result, we have shown that at zero temper-

ature, the Landau-Zener transition probability is dissipation independent.

This result holds true for all quantum heat baths with a non-degenerate

ground state.
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