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Abstract We study the refractive-index sensing proper-
ties of plasmonic nanotubes with a dielectric core and
ultrathin metal shell. The few nanometer thin metal
shell is described by both the usual Drude model and
the nonlocal hydrodynamic model to investigate the
effects of nonlocality. We derive an analytical expres-
sion for the extinction cross section and show how sens-
ing of the refractive index of the surrounding medium
and the figure of merit are affected by the shape and
size of the nanotubes. Comparison with other localized
surface plasmon resonance sensors reveals that the
nanotube exhibits superior sensitivity and comparable
figure of merit.
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Introduction

It is well known that metallic nanoparticles can sustain
localized surface plasmon (LSP) oscillations, whose
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resonance frequencies in the quasistatic limit depend
solely on the geometry of the nanoparticle, the per-
mittivity of the metal, and the surrounding permittiv-
ity. The dependency of the LSP resonance (LSPR)
on the surrounding medium makes metallic particles
extremely good sensors, progressing towards the de-
tection of single molecules [1]. However, the weak
effect of retardation on the LSP resonance in nano-
sized metal particles leaves only one parameter to truly
engineer: the geometry. By modifying the structure of
the metal nanoparticle to have a dielectric core with
a metal shell, an increased tunability is achieved due
to the plasmon hybridization of the inner and outer
surfaces of the metal [2]. Especially the spherical core–
shell structure has received a considerable amount of
attention in recent years [3–6] due to its excellent and
tunable sensing properties, which show great promise
in biological studies such as cancer therapy [7]. The
plasmon hybridization allows one to position the LSP
resonance of the nanoshell as desired by simply vary-
ing the core size r1 and/or outer radius r2 appro-
priately [8].

The hybridization of the inner and outer surface
plasmons increases when the metal shell becomes thin-
ner [8], which gives rise to significantly altered LSP
resonances compared to usual homogeneous metal
nanoparticles. Studies of the hybridization between two
spherical [9] or cylindrical [10] metal nanoparticles in
few nanometer proximity reveal that the effects of non-
local response increase with increasing hybridization.
Furthermore, nanosized metal particles [11–14] and
metal films [15] are also strongly affected by nonlocal
effects. The core–shell particle thus calls for a nonlocal
description, since it features an ultrathin metallic shell
with a resulting strong plasmon hybridization.
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The use of arrays of nanotubes with high aspect
ratio for biosensing [16] and hydrogen sensing [17]
has yielded impressive results, yet only few theoretical
studies have been performed on the nanotube [18, 19].
Schröter et al. investigate the plasmonic modes and
dispersion relations of the nanotube [18], while Zhu
et al. perform calculations using the discrete dipole
approximation to discuss the changes of the resonance
wavelength of the nanotube due to variations of the
aspect ratio [19]. Thus, to our knowledge, no systematic
study has yet been performed that addresses which pa-
rameters determine the LSPR refractive-index sensitiv-
ity of a nanotube-based sensor. In this paper, we fill this
gap with a systematic study of the sensing and scattering
properties of a single infinitely long cylindrical core–
shell nanowire, see inset of Fig. 1, which is a good
description of dilute arrays of noninteracting nanotubes
with a high aspect ratio. On the basis of this study, we
propose how to optimize a nanotube-based sensor to
achieve the utmost sensitivity for the refractive-index
sensing of both gases and liquids.

The outline of this paper is as follows. In the section
“Theory,” we discuss the physical principles of local

Fig. 1 Extinction cross sections as a function of incident photon
energy for TM-polarized light normally incident on a (r1, r2) =
(40 nm, 45 nm) silica–Au cylinder in vacuum. The three curves
correspond to the nonlocal and local models without interband
transitions (solid green and dashed blue curves, respectively) and
the nonlocal model with interband transitions (solid red curve).
Free-electron parameters for Au as in [20]: �ωp = 7.872 eV, �γ =
0.0530 eV, and vF = 1.39 × 106 m/s. Interband parameters for
Au are also as in [20] and valid up to 5 eV. The panel on the
right shows the normalized intensity distributions |E|2/|E0|2 in
the nonlocal model without interband transitions at the dipole
and quadrupole resonance frequencies. Here, E0 is the incident
electric field. Inset: Schematic diagram of core–shell structure
with relevant parameters

and nonlocal response and introduce the sensitivity
and figure of merit (FOM) as quantitative measures of
the performance of a LSPR-based sensor. The section
“Results and Discussion” is dedicated to the study
of a nanotube with a silica core and gold shell. We
determine the dependency of the sensitivity and FOM
on the shape and size of the nanotube, using both
local and nonlocal theory to model the response of the
gold shell. Our conclusions and outlook on nanotube-
based sensors is given in the section “Conclusions and
Outlook,” and details on the analytical calculations are
in the Appendix.

Theory

The ability of LSPR-based sensors to detect changes
in the refractive index of their surrounding medium
is usually quantified by the sensitivity and FOM [1].
The sensitivity ∂λ/∂nb is determined as the shift in
wavelength of the considered LSP resonance in the
extinction spectrum of the sensor, when varying the
background refractive index nb = √

εb, while the FOM
is given as

FOM = |∂λ/∂nb|
�λ

(1)

where �λ is the resonance linewidth, calculated as the
FWHM of the considered LSP resonance in the extinc-
tion spectrum. Thus, to determine the performance of
the nanotube as a LSPR sensor, we must calculate its
extinction cross section, as this quantifies the extinction
spectrum and therefore allows us to determine the
sensitivity and FOM.

Predictions for the extinction cross section depend
on how the optical response of electrons in the metal
is modeled. The common approach to describe the
response of metals is by making the local approxi-
mation which assumes that the response field at a
certain position is proportional to the driving field at
that position, with the proportionality function being a
position- and frequency-dependent dielectric function.
This approach has the rather unphysical consequence
that all surface charges reside on an infinitely thin layer
on the boundaries of the metal, thereby neglecting
the actual extent (or wave nature) of the electrons.
While the local approximation is justified as long as
the metal boundaries are far apart such that the in-
teraction between electrons due to their extent can be
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neglected (i.e., large metallic structures), it cannot be
safely assumed for nanosized metal particles where the
wavelength of the electron becomes comparable in size
to the metal particle. By describing the metal using the
semiclassical hydrodynamic Drude model [14], we relax
the local approximation by allowing the existence of
local inhomogeneity in the density of the electron gas,
which gives rise to pressure waves. The electron-gas
pressure waves provide a means to transport energy
in the metal in addition to the electromagnetic waves,
which gives rise to nonlocal response: the response of
the metal at a certain spatial point can depend on the
driving field at other nearby points (on the length scale
of the Fermi wavelength) in the metal.

In the Appendix, we provide an analytical expression
for the extinction cross section in the cases of both non-
local and local response, for a normally incident trans-
verse magnetic (TM)-polarized wave (see the inset of
Fig. 1). We have checked the analytical expression with
our numerical implementation of the hydrodynamic
Drude model [10], which showed a perfect agreement
(not shown in this paper).

Results and Discussion

We consider the specific core–shell structure, where the
core is silica (SiO2) with dielectric constant εc = 1.52

and the shell is gold (Au) modeled with the data by
Rakić et al. [20]. To clearly show the difference in
extinction cross section in local and nonlocal response,
we start by examining the case where interband effects
in Au are neglected. Figure 1 depicts the extinction
cross section for a (r1, r2) = (40 nm, 45 nm) silica–Au
cylinder in vacuum comparing the local and nonlocal
model. The local approximation shows three distinct
peaks, two at low frequencies (dipole and quadrupole
peaks) and one at a high frequency (near 7 eV). These
are due to the interaction between the localized plas-
mons at the inner and outer surface of the nanoshell or,
equivalently, the interaction between a cavity mode and
a cylinder mode [8]. The nonlocal description allows
the same classification of peaks as the local approx-
imation [10, 14], although the high-frequency peak is
blueshifted compared to the local model. Since sensing
depends on peak shifts, it is important to take pos-
sible nonlocal blueshifts into account. However, the
low-frequency resonances show no noticeable blueshift
because the strength of the nonlocal blueshift does not
only increase with decreasing thickness of the metal
layer [9, 13–15] but it also depends on the frequency,

with a decreasing blueshift for lower frequencies. Thus,
we find that there is an intricate interplay between
plasmon hybridization and nonlocal response: Since a
thinner metal shell produces stronger plasmon hybrid-
ization, the dipole and quadrupole peaks are pushed to
such low frequencies that the nonlocal blueshift effect
due to nanosized metallic features is counteracted by
the low frequency of the resonances.

The panel on the right of Fig. 1 shows the nonlocal
normalized intensity distribution in the metal at the
dipole and quadrupole resonance frequencies, illus-
trating the expected dipole and quadrupole nature of
the resonances. Above the plasma energy �ωp, we see
the characteristic additional resonances in the nonlocal
model due to the excitation of longitudinal modes, as
previously reported for different metal nanoparticles
[13, 14, 21].

The difference between the red and green curves
in Fig. 1 shows the importance of taking into account
interband transitions in the response of the metal shell.
The implications on the dipole and quadrupole reso-
nances are that they are redshifted and damped due
to interband transitions, with greatest impact on the
quadrupole peak. In the remaining part of this paper,
we will always use measured values for the dielectric
function [20], i.e., we take interband transitions into
account. We will concentrate on the dipole resonance,
since this peak is the strongest, is close to visible and
infrared frequencies, and can be affected by the shape
and size of the cylinder and the background permittiv-
ity. Furthermore, the shift due to hybridization of the
dipole resonance to lower energies is advantageous as
it reduces the effects of Drude and interband damping.

There are two geometrical properties that can be
modified in the nanotube structure: the first is the shape
defined by the r1/r2 ratio and the second is the overall
size, that is, varying the outer radius r2 but keeping r1/r2

constant. In Fig. 2, we show the effect of shape varia-
tions of the nanotube on its sensing abilities, which is
quantified through the change in the dipole resonance
wavelength when the background refractive index is
increased. We see that regardless of the shape, the
dependency is always approximately linear. However,
as shown in Fig. 2(i), there is no significant dependency
on the background refractive index for low r1/r2 ra-
tios, indicating the lack of ability to sense. Figure 2(i)
illustrates that thicker tubes are less good as refractive-
index sensors because the peak intensity is maximal
near the inner rather than the outer surface. Only when
the shell becomes thin (r1/r2 → 1) does the resonance
wavelength shift with the refractive index. The thinner
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Fig. 2 The dipole resonance wavelength calculated with both
local and nonlocal response taking into account interband tran-
sitions as a function of the background refractive index for four
different r1/r2 ratios: (i) 0.7, (ii) 0.9, (iii) 0.95, and (iv) 0.98. The
outer radius of the nanotube is kept constant at r2 = 100 nm. The
panel on the right shows the normalized intensity distribution
|E|2/|E0|2 in the nonlocal model at the vacuum dipole resonance
wavelength for the corresponding four different shapes

the shell, the greater is the average slope of the curves.
Relaxing the nonlocal description to a local one does
not change this trend because the dipole resonances
occur at too low energies for the nonlocal blueshift to
kick in. Furthermore, the resonance wavelength shifts
to higher wavelengths when the shell becomes thinner
because the coupling between the cavity and cylinder
modes increases. Thus, even though Fig. 2(iv) repre-
sents a nanotube with a 2-nm thin metal shell, where
nonlocal blueshifts are expected to be very promi-
nent, the local approximation predicts sensitivities that
are almost identical to the nonlocal description. So,
as in Fig. 1, here in Fig. 2 we see that for ultrathin
nanotubes, the usual observation of larger nonlocal
blueshifts for smaller structures does not occur. The
nonlocal blueshift cancels out with the decrease of the
resonance energy due to increased hybridization.

For a more quantitative description of the sensitivity
of the nanotube, we present sensitivity and FOM calcu-
lations of the nanotube structures shown in Fig. 2 at the
refractive index of air and water in Table 1. As in Fig. 2,
it is again clear from Table 1 that increased sensitivity
can be achieved for thinner metal shells. Comparing the
sensitivity of the nanotube with other LSPR sensors
based on different nanoparticle geometries [22, 23],
where the sensitivity is in the range 90 − 801 nm per
refractive index unit (RIU), shows that the nanotube is
comparable in sensitivity for ratios r1/r2 > 0.7, while it
is superior for very high r1/r2 ratios. Comparison of the

Table 1 Sensitivity and figure of merit calculations (Eq. (1)) in
the nonlocal description at the refractive index of air nb = 1 (for
gas sensing) and water nb = 1.333 (for liquid sensing) for the four
different shapes of Fig. 2

(r1, r2) ∂λ/∂nb (nm/RIU) FOM
nb = 1 nb = 1.333 nb = 1 nb = 1.333

(70 nm, 100 nm) 58 −103 0.3 0.4
(90 nm, 100 nm) 298 261 1.6 1.2
(95 nm, 100 nm) 470 539 1.9 1.9
(98 nm, 100 nm) 790 788 2.4 2.2

FOM with other nanoparticle LSP sensors also shows
equally good performance by the nanotube, although
the FOM is mainly dependent on the properties of Au
and not easily improved by changing the geometry [24].
The sensitivity values in Table 1 also reveal that the
nanotube has a high sensitivity at both the refractive
index of air and water, which shows the versatility of
a nanotube-based sensor and its applicability as both a
gas and liquid sensor.

Besides shape variations, we also varied the size r2

of the nanotube while keeping r1/r2 constant. Figure 3
depicts the dipole resonance wavelength as a function
of the background refractive index for three different
sizes with r1/r2 = 0.9. The sensing ability of the nan-
otube is not as dependent on size as it is on shape, which
can be seen by the three almost parallel lines in Fig. 3.
Even though the sensitivity does not change much with

Fig. 3 The dipole resonance wavelength calculated with both
local and nonlocal response taking into account interband tran-
sitions as a function of the background refractive index for three
different r2 values: (i) 30 nm, (ii) 50 nm, and (iii) 80 nm. The
shape of the nanotube is kept constant by setting r1/r2 = 0.9.
The panel on the right shows the normalized intensity distribu-
tion |E|2/|E0|2 in the nonlocal model at the vacuum resonance
wavelength for the corresponding three different sizes. Inset: The
LSPR sensitivity at the refractive index of air (nb = 1) and water
(nb = 1.333) calculated with the nonlocal model as a function of
outer radius while keeping r1/r2 = 0.9
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increasing size, there is still an optimum size which
occurs at r2 = 50 nm and r2 = 70 nm for liquid and gas
sensing, respectively, see the inset of Fig. 3. The fact
that it is neither the smallest nor the biggest nanotube
size that gives the highest sensitivity can be explained
by a trade-off between the total structure size and the
shell thickness. If the size of the structure is too small,
then we have a weak LSP excitation and thereby poor
sensing ability, but if the structure size is too big (with
the shape kept constant), the absolute shell thickness
increases, which also decreases the sensing ability, as
we saw in Fig. 2. Therefore, for a larger r1/r2 value, the
optimum size will also be larger.

In Fig. 3, we also show the calculations using the local
approximation. As seen, effects are surprisingly well
accounted for even with a local description, despite the
fact that we actually consider very thin metallic shells,
for instance a 3-nm shell in Fig. 3(iii), with concomitant
strong plasmon hybridization. The strong hybridization
in ultrathin metal shells shifts the dipole resonance
to very low energies, where the nonlocal blueshift
is weak. The sensitivity and consequently the FOM
are therefore weakly influenced by nonlocal response.
Although it is hardly visible in Fig. 3, the local reso-
nances do in fact occur at slightly longer wavelengths
than in the nonlocal description, revealing a small non-
local blueshift.

Conclusions and Outlook

We have examined the infinite single dielectric-metal
nanotube structure as an approximation for a dilute
array of nanotubes with high aspect ratio. We calcu-
late the extinction properties of a silica–gold nanotube
analytically for both local and nonlocal response by
extending the Mie theory for nanowires to nanotube
geometries. Our investigation reveals that in contrast
to the spherical nanoshell [6], the sensing ability of
the nanotube is highly dependent on the shape of the
structure, where few nanometer thin shells produce
extreme sensitivities. The sensitivity is shown to be less
dependent on the overall structure size. The sensitivity
at the refractive index of air and water of ultrathin
nanotubes is superior to other nanoparticle geometries,
making nanotubes very promising for both gas and
liquid sensing.

Our results also show unexpectedly that nonlocal
response has a negligible influence on the extinction
and sensing properties of the nanotube, even though
the metal shell is ultrathin (a few nanometer) because

the hybridization in the nanotube is so strong that
the dipole resonance is pushed to very low energies.
The strength of the nonlocal blueshift is an interplay
between the metal thickness and the resonance energy,
where a thinner shell produces a stronger blueshift
while a lower energy produces a weaker blueshift. This
interplay is surprisingly well balanced in the nanotube
structure because a thinner shell gives rise to lower
resonance energies.

With the high sensitivity and good FOM of the
nanotube geometry, we propose a sensor based on
ultrathin nanotubes. The robustness of the sensitivity
of the nanotube to size variations provides desirable
advantages, since fluctuations in size due to imperfect
fabrication will have a less impact. In the special case
of gas sensing, the sensitivity may be further improved
by a factor of 2 by designing the nanotube to have a
hollow core. With a hollow core, the inner surface of the
metal shell is also exposed to the surrounding medium,
which significantly improves the sensitivity. However,
mechanical stability is sacrificed with a hollow core if
for instance the nanotubes are to stand vertically on a
substrate.

Appendix

The nonlocal optical properties of the nanotube are de-
termined by solving Maxwell’s wave equation coupled
to the hydrodynamic equation for the current [14]. We
solve the coupled set of equations by extending the Mie
theory for wires of Ref. [25] to core–shell structures. By
expanding the electromagnetic fields in the dielectric
core, metal shell, and surrounding medium in cylin-
drical Bessel functions, we can most easily take into
account Maxwell’s boundary conditions along with the
additional boundary condition of a vanishing normal
component of the current in the nonlocal case [14].
Although quantum tunneling is not taken into account
with this treatment, we do not expect any such effects
to be important in this structure [26, 27].

To determine the extinction property of the infinite
cylindrical nanotube we calculate the extinction cross
section [28]

σext = − 2

k0r2

∞∑

n=−∞
Re{an}, (2)

where k0 = √
εbω/c is the background wave vector, εb

is the background permittivity, and an is a cylindrical
Bessel-function expansion coefficient for the scattered
electromagnetic field. We consider a normally incident
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electric-field polarization perpendicular to the cylinder
axis (TM), as sketched in the inset of Fig. 1. The

nonlocal-response scattering coefficient is calculated
analytically as

an = −
√

εb Jn(k0r2)
[
Cn + J′

n Pn − H′
n Qn

] − √
ε J′

n(k0r2)
[
Jn Pn − Hn Qn

]
√

εb Hn(k0r2)
[
Cn + J′

n Pn − H′
n Qn

] − √
εH′

n(k0r2)
[
Jn Pn − Hn Qn

] . (3)

Here, Jn and Hn are the Bessel and Hankel functions
of the first kind, kt = √

εω/c, and ε(ω) = εother(ω) −
ω2

p/(ω[ω + iγ ]) is the Drude local-response function
that includes interband effects through εother(ω). The
arguments of the Bessel and Hankel functions are ktr2

unless written explicitly otherwise.
The coefficients Pn, Qn, and Cn are given by

Pn = pnαn + Jn(kcr1)
[
Hn(ktr1)δn + Hnτn

]
, (4)

Qn = qnαn + Jn(kcr1)
[
Jn(ktr1)δn + Jnτn

]
, (5)

Cn = in
k0r2

[
Hn(klr2)cn − Jn(klr2)dn

]
, (6)

where kc = √
εcω/c and εc is the dielectric constant of

the core. Furthermore, k2
l = (ω2 + iωγ − ω2

p/εother)/β
2

and β2 = 3v2
F/5 with vF being the Fermi velocity of the

metal shell. The coefficients pn, qn, αn, δn and τn of
Eqs. (4–5) are given as

pn = √
ε J′

n(kcr1)Hn(ktr1) − √
εc Jn(kcr1)H′

n(ktr1), (7)

qn = √
ε J′

n(kcr1)Jn(ktr1) − √
εc Jn(kcr1)J′

n(ktr1). (8)

αn =
(

klεother

k0

)2

× [
J′

n(klr2)H′
n(klr1) − H′

n(klr2)J′
n(klr1)

]
, (9)

δn = −kln2√εcεother(ε − εother)

ktk2
0r2

1

× [
J′

n(klr2)Hn(klr1) − H′
n(klr2)Jn(klr1)

]
, (10)

τn = −kln2√εcεother(ε − εother)

ktk2
0r1r2

× [
H′

n(klr1)Jn(klr1) − J′
n(klr1)Hn(klr1)

]
, (11)

while the coefficients cn and dn of Eq. (6) are given as

cn = fn
[
J′

n(klr2)ηn + Jn(klr1)κn
]

+ J′
n(klr1)gn

[
Jn pn − Hnqn

]
, (12)

dn = fn
[
H′

n(klr2)ηn + Hn(klr1)κn
]

+ H′
n(klr1)gn

[
Jn pn − Hnqn

]
, (13)

where

gn = inklεother(ε − εother)

k0ktr2
, (14)

fn = in
√

εc(ε − εother)

k0ktr1
Jn(ktr1), (15)

ηn = kl
[
Jn(ktr1)H′

n(ktr1) − Hn(ktr1)J′
n(ktr1)

]
, (16)

κn = n2(ε − εother)

ktr2r1

[
Jn(ktr1)Hn − Hn(ktr1)Jn

]
. (17)

The local-response result can be retrieved in the limit of
a vanishing Fermi velocity for which Pn = pn, Qn = qn,
and Cn = 0.
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