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  Abstract:   We present a novel wave equation for linearized 

plasmonic response, obtained by combining the coupled 

real-space differential equations for the electric field and 

current density. Nonlocal dynamics are fully accounted 

for, and the formulation is very well suited for numerical 

implementation, allowing us to study waveguides with 

subnanometer cross-sections exhibiting extreme light 

confinement. We show that groove and wedge waveguides 

have a fundamental lower limit in their mode confine-

ment, only captured by the nonlocal theory. The limita-

tion translates into an upper limit for the corresponding 

Purcell factors, and thus has important implications for 

quantum plasmonics.  
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  Wave propagation along dielectric waveguide structures 

has over the years been extended also to plasmonic 

systems with waveguide modes in the form of surface-

plasmon polaritons. Plasmonic waveguides have attracted 

considerable attention during the past decade, primarily 

due to their ability to support extremely confined modes, 

i.e., modes that do not exhibit a diffraction-limited cutoff 

for progressively smaller waveguide cross sections but 

transform themselves into their electrostatic counterparts 

[1]. Investigations of nanowire [2], groove [3] and wedge [4] 

waveguides, shown to ensure extreme light confinement, 

raise a natural interest in the influence of nonlocal effects 

on strongly confined plasmonic modes [5]. Waveguid-

ing by metal nanowires [6] and more recently plasmonic 

focusing by conical tips [7, 8] have been studied in the 

context of nonlocal response. However, with the excep-

tion of few analytical studies of simple planar geometries 

[9, 10], nonlocal effects in the dispersion properties of 

complex waveguides remain unexplored, a circumstance 

that can partly be explained by the added complexity due 

to nonlocal effects as compared to the widespread frame-

work of the local-response approximation (LRA) [11]. 

 There is also another good reason to look for nonlocal 

effects in extreme light confinement. Subwavelength mode 

confinement implies large effective Purcell factors and 

thereby strong coupling of single emitters to nearby plas-

monic waveguide modes [12]. The latter opens a doorway 

to quantum optics with surface plasmons, including the 

possibilities for realization of single-photon transistors 

[13] and long-distance entanglement of qubits [14]. Since 

one would expect that the plasmonic mode confinement 

is fundamentally limited by nonlocal effects, similarly 

to nonlocal limits in the field enhancement of localized 

plasmon excitations [15, 16], studies of the plasmonic 

mode confinement beyond the LRA are of great interest for 

quantum plasmonics. More specifically, in the LRA higher 

single-photon efficiencies [12] and Purcell factors [13] have 

been found to occur for smaller waveguide radii  R , and 

the  R  → 0 limit is commonly taken to estimate the strong-

est light-matter interactions. Nonlocal response effects 
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become increasingly important in this  R  → 0 limit, which is 

an important motivation for our present study of nonlocal 

effects for highly confined plasmonic waveguides. 

 In this Letter, we derive a novel wave equation which 

fully takes into account the nonlocal dynamics of an often-

employed hydrodynamical model (HDM). We apply the 

wave equation to plasmonic waveguides ( Figure 1 ) with 

extreme light confinement, defined by the subnanometer 

dimensions of the waveguide cross section. After stringent 

bench-marking of our approach against the analytically 

tractable case of nanowires with circular cross-section, we 

analyze in detail groove and wedge waveguides and dem-

onstrate the existence of fundamental limits in their mode 

confinement and Purcell factors, imposed by the nonlo-

cal effects. At the same time, our results reveal that there 

is room for downsizing present-day quantum plasmonic 

devices before these fundamental limitations set in.  

 The nonlocal response, or spatial dispersion, is a con-

sequence of the quantum many-body properties of the 

electron gas, which we here take into account within a 

semi-classical model [17 – 20]. In this model the equation-

of-motion for an electron in an electrical field is supple-

mented with a hydrodynamic pressure term originating 

from the quantum kinetics of the electron gas. By lineari-

zation, the plasmonic response is governed by the follow-

ing pair of coupled real-space differential equations [21]: 
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 Here, the term  ∇ [ ∇  ‧  J ] =  ∇   ×   ∇   ×   J  +  ∇  2  J  is a correction to 

Ohm ’ s law and scales as   2 2(3 / 5) Fvβ =  within the Thomas –

 Fermi model [22] with   ν  F   being the Fermi velocity. For sim-

plicity we neglect here any interband effects present in 
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 Figure 1      Generic plasmonic waveguiding geometries with wave 

propagation in the  z -direction and extreme transverse confinement 

in the  xy -plane due to subnanometer geometric dimensions, e.g., 

the nanowire radius  R  or the edge radius-of-curvature  r .    

real metals; these can be included straightforwardly [23, 

see Supplemental material]. In our numerical solutions we 

will consider Drude parameters appropriate for silver [24]. 

Assuming a hard-wall confinement associated with a high 

work function, the boundary conditions for the current at 

the metal surface become particularly simple: the tangen-

tial component is unrestricted while the normal compo-

nent vanishes due to the current continuity and vanishing 

of all electron wave functions at the surface [10, 21]. 

 For analytical progress one can eliminate the current 

from Eq. (1a), thereby arriving at an integral equation 

where a dyadic Green ’ s function accounts for the nonlo-

cal dynamics of the electron gas [25, 26]. Alternatively, the 

coupled equations (1a) and (1b) form a natural starting 

point for a numerical treatment of arbitrarily shaped metal-

lic nanostructures, e.g., with a state-of-the-art finite-ele-

ment method [23, 27]. Recently, we employed this approach 

to study field enhancement and SERS in groove struc-

tures [15]. However, for waveguiding geometries we seek 

solutions of the form  E ( r ) ∝ exp( ik z z ) leading to an eigen-

value problem for  k z  (  ω  ) with a six-component eigenvector 

 {  E,  J  } . In that context the coupled-equation formulation 

is numerically less attractive. Here, instead, we eliminate 

the current from Eq. (1b), a procedure that, after straight-

forward manipulations using standard vector calculus (see 

Supplemental material), results in an appealingly compact, 

but yet entirely general nonlocal wave equation: 
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 Here, the operator   
NL

ˆ ( )ε r  contains the nonlocal effects. 

In the limit   β   → 0,   
NL

ˆ ( )ε r  reduces to the usual Drude dielec-

tric function   2

0
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used in the LRA. Thus, with a simple rewriting we have 

turned the coupled-wave equations into a form reminis-

cent of the usual wave equation, with all aspects of non-

local response contained in the Laplacian term   β   2  ∇  2  in 

  
NL

ˆ ( ).ε r  This is the main theoretical result of this Letter. 

In passing, we note that with Eq. (2b) we immediately 

recover the dispersion relation   2 2 2( ) pk kω ω β= +  for bulk 

plasmons in translationally invariant plasma (see Supple-

mental material). Clearly, the single-line form is beneficial 

for the conceptual understanding and further analytical 

progress, as well as for numerical implementations: the 

additional Laplacian does not add any complications 

beyond those already posted by the double-curl opera-

tor on the left-hand side equation. Likewise the bound-

ary condition that was imposed on the current  J  in Eq. (1) 
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translates into an additional boundary condition on the 

electric field in Eq. (2), see (Supplemental material). While 

Eq. (1) can be solved numerically for scattering problems 

[15, 23, 27] and some waveguide problems [28], the result 

in Eq. (2) is clearly a major advancement for efficient and 

accurate numerical eigenvalue solutions in waveguiding 

geometries with arbitrarily shaped waveguide cross sec-

tions. In particular, differential operations reduce to a 

Laplacian and the dimension of the eigenvalue problem is 

reduced from six field components to only three. 

 We now apply the developed formalism to the wave-

guide configurations of  Figure 1  which can provide 

extreme light confinement [1]: i) metal nanowires with cir-

cular cross sections [2] where analytical solutions [7] are 

available for benchmarking of the numerics, ii) grooves 

in metal [3], and iii) metal wedges [4]. In addition to the 

usual mode characteristics, effective index and propa-

gation length, we also evaluate the effective mode area: 

 A  
eff

  =  V  
eff

 / L , where  V  
eff

  is the effective mode volume associ-

ated with the Purcell effect, i.e., 
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 where  u ( r ) is the electromagnetic energy functional (see 

Supplemental material). The cross-sectional integral 

extends over the volumes  V m   and  V a   occupied by metal 

and air, respectively, while the evaluation of the maximal 

energy density is restricted to the air region where dipole 

emitters can be placed. 

 The dispersion curves and effective mode areas (nor-

malized to the nanowire cross section) calculated for 

silver nanowires of different radii ( Figure 2 A,B) exhibit 

a blueshift and increased mode area (for fixed  k z  ) when 

taking nonlocal effects into account. The numerical results 

of Eq. (2) show excellent agreement with the correspond-

ing analytical results previously derived from Eq. (1) [7]. 

Importantly, nonlocal dynamics influences strongly the 

mode field distribution (see  Figure 2 C), because, contrary 

to the LRA case, the normal component of the electrical 

field within the HDM is continuous across the interfaces 

(this is a special case for a Drude metal without interband 

effects and surrounded by vacuum [See Supplemental 

material]). It is indeed seen ( Figure 2 C) that  |  E     
ρ
    |  is discon-

tinuous on the boundary in the local case, while it varies 

continuously across the boundary in the nonlocal case. 

This variation occurs in a region extending over  ≈ 0.1 nm, 

that is of the order of the Fermi wavelength of silver.  
 The results for cylindrical nanowires, while dem-

onstrating the main effects of nonlocal dynamics on 

the mode characteristics, indicate that the quantitative 
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 Figure 2      Fundamental waveguide mode of a cylindrical silver 

nanowire embedded in air. (A) Dispersion relation   ω  ( k z  ) and (B) 

normalized effective mode area within the HDM for the nanowire 

radius  R  = 2 nm (blue) and 4 nm (green), respectively, showing excel-

lent agreement between numerical solutions of Eq. (2) (solid points) 

and analytical results (solid lines). For comparison, the red-dashed 

curve shows the universal result of the nonretarded LRA, with its 

large- k z   limiting value of   ω / 2p  indicated in (A) by the horizontal 

line. (C) Radial distribution of the electric field  |  E      
ρ 
    |  at   ω   = 0.6   ω  

p
   for 

 R  = 4 nm, contrasting the continuous field variation in the HDM with 

its usual boundary discontinuity in the LRA.    

changes are modest even for very small radii ( Figure 2 ). 

In order to explore  fundamental  limitations, one has to 

consider the limit of vanishing radii of curvature. While 

subnanometer radii appear unrealistic for nanowires, fab-

rication of grooves cut in metal and metal wedges, e.g., 

by nanoimprint lithography [29], can in fact result in nm-

sharp edges with corresponding nm-sized wedge modes 

[4]. We expect that nonlocal effects then come into play. 

 Rather surprisingly, the mode effective index and 

propagation length calculated for silver grooves and 
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 Figure 3      Effective index (left axis) and propagation length (right 

axis) versus wavelength for the fundamental mode in complimentary 

(A) V-groove and (B) wedge silver waveguides, both with an opening 

angle of 30 ° . The nonlocal results (solid circular symbols) obtained 

with Eq. (2) are contrasted to the LRA (open circles), with dashed lines 

serving as eye guides. Results for mathematically sharp structures 

with  r  = 0 (blue solid circles) are contrasted to finite rounding with 

 r  = 1 nm (red open circles). Insets show field-intensity distributions 

(white scale bars are 1 nm long) calculated within the HDM (  λ   = 600 

nm) for infinitely sharp edges. The fingerprint of nonlocal effects is 

clearly visible as the field penetrates into the metal by a distance of 

the order of the Fermi wavelength of silver.    

wedges ( Figure 3 ) exhibit even weaker influence of the 

nonlocal effects as compared to the case of nanowires 

( Figure 2 ). In fact, there is no noticeable difference between 

the LRA- and HDM-based results obtained for 1-nm-radius 

of edges. In the limit of mathematically sharp edges, the 

mode effective index becomes only slightly larger and the 

propagation length slightly smaller than those calculated 

for 1 nm edge radius ( Figure 3 ). We explain this result by 

the fact that groove and wedge plasmonic modes are only 

partially affected by the very tip, being distributed also 

and predominantly over flat edges (see insets in  Figure 3 ).  

 The situation changes drastically when one consid-

ers the mode confinement, using the mode area associ-

ated with the Purcell factor, Eq. (3). We recall that the 

field enhancement calculated within the LRA grows 

without bound for progressively sharper pointed struc-

tures while it remains finite when calculated within HDM 

[15, 16]. Analogously, in the present case, one may expect 

that the mode area calculated within the LRA decreases 

without bound for a decreasing edge radius, while it may 
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 Figure 4      Normalized mode area versus wavelength for the funda-

mental mode in complimentary (A) V-groove and (B) wedge silver 

waveguides, both with opening angles of 30 ° . The HDM results 

(solid symbols) are contrasted to the LRA (open circles) for  r  = 1 nm 

(red) and  r  = 0.2 nm (green). Results for mathematically sharp struc-

tures with  r  = 0 (blue solid circles) define a lower limit in the HDM 

(gray-shaded regions are inaccessible). For the LRA, the  r  = 0.1 nm 

results (magenta) exceed this limit and the mode area tends to 

zero when  r  → 0. Insets show field-intensity distributions (white 

scale bars are 5 nm long) at   λ   = 600 nm. The LRA intensities are with 

rounding  r  = 1 nm, while  r  = 0 is used for the HDM maps.    
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saturate within the HDM. LRA-based simulations for sub-

nanometer radii of edges show ( Figure 4 ) that the mode 

area indeed tends to zero, without any apparent satura-

tion. This trend is more pronounced for wedges than for 

grooves, because the wedge geometry ensures generally 

a better mode confinement (cf.  Figure 4 A and B), as was 

also noted previously [4]. At the same time, the simula-

tions conducted within the HDM demonstrate clearly 

the existence of a lower bound for the mode area which 

remains finite even for mathematically sharp edges (blue 

circles in  Figure 4 ). The associated Purcell factors can be 

estimated by inverse of the normalized mode areas dis-

played in  Figure 4  [30]. Thus, our calculations show that 

there is a fundamental limit for the maximum Purcell 

factors achievable with plasmonic waveguides. It is inter-

esting that the upper limit of Purcell factors evaluated 

in this way decreases noticeably in the long-wavelength 

regime. This feature is related to a general weakening 

of all plasmonic effects, including waveguiding [1], for 

longer wavelengths (with metals approaching the limit-

ing case of perfect conductors). At the same time, in the 

case of wedges, these factors remain substantial even 

at telecom wavelengths, with the propagation lengths 

becoming considerably long ( Figure  3 ) and amenable 

for circuitry application. It should also be borne in mind 

that the plasmonic field confinement in both grooves and 

wedges increases for smaller opening angles [3, 4], so 

that even larger Purcell factors can be achieved, albeit at 

the expense of shorter propagation.  

 In conclusion, using a novel wave equation account-

ing for nonlocal dynamics, we considered plasmonic 

waveguides with extreme light confinement and demon-

strated the existence of a fundamental limit in their mode 

confinement imposed by nonlocal effects. Our results 

imply fundamental limitations in the corresponding 

Purcell factors, showing at the same time the possibility 

of achieving very high Purcell factors with V-groove and 

wedge waveguides that ensure sufficiently long propa-

gation lengths for applications in quantum plasmonics. 

Here, we have focused on single-connected metal geome-

tries where dominating currents are naturally of an Ohmic 

nature, whereas tunneling currents may cause important 

limitations too in e.g., closely spaced metallic objects [31]. 

Finally, beyond the linear response fundamental limita-

tions may arise due to nonlinearities [32].  
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