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Spontaneous-emission rates in finite photonic crystals of plane scatterers
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The concept of a plane scatterer that was developed earlier for scalar waves is generalized so that polariza-
tion of light is included. Starting from a Lippmann-Schwinger formalism for vector waves, we show that the
Green function has to be regularized beforeT matrices can be defined in a consistent way. After the regular-
ization, optical modes and Green functions are determined exactly for finite structures built up of an arbitrary
number of parallel planes, at arbitrary positions, and where each plane can have different optical properties.
The model is applied to the special case of finite crystals consisting of regularly spaced identical planes, where
analytical methods can be taken further and only light numerical tasks remain. The formalism is used to
calculate position- and orientation-dependent spontaneous-emission rates inside and near the finite photonic
crystals. The results show that emission rates and reflection properties can differ strongly for scalar and for
vector waves. The finite size of the crystal influences the emission rates. For parallel dipoles close to a plane,
emission into guided modes gives rise to a peak in the frequency-dependent emission rate.
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I. INTRODUCTION

Photonic crystals are a well-studied subject nowada
both theoretically and experimentally@1#. Of fundamental
importance is the prediction@2# that in three-dimensiona
photonic crystals that meet a tough combination of requ
ments, light propagation will be completely inhibited in a
directions and a photonic band gap will show up for cert
frequencies of light. It is important for technology that ph
tonic crystals can be created that guide light with low los
and bend light on a scale of an optical wavelength. The la
properties do not require a band gap in all three dimensio

A photonic-band-gap crystal would reflect light for a
angles of incidence, when the frequency of the light l
within the gap. However, lower-dimensional photonic cry
tals such as Bragg mirrors can also be omnidirectional m
rors, without having a band gap@3–5#. Thus, external light
sources can only give an indication that there is a band
or a proof that there is no gap.

Internal light sources such as excited atoms do a better
in probing a band gap, because only a gap would comple
inhibit spontaneous emission by internal sources@2#. For the
same reason, a photonic-band-gap crystal would be a w
new playground in quantum optics, both when one is in
ested in spontaneous emission in itself, and in proce
which normally are obscured or made less efficient beca
of spontaneous emission. Not only emission rates would
strongly modified inside a band-gap crystal, but also reson
dipole-dipole interactions, for example, as they are media
by the electromagnetic field@6#. The focus of this paper is on
spontaneous-emission rates of visible light.

For atomic transition frequencies in the band gap of
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infinite three-dimensional photonic crystal, emission ra
vanish everywhere in the inhomogeneous structure. In p
tice, such a uniform suppression of emission rates has no
been observed for visible light: evidence of crystals exhib
ing a full photonic band gap in the visible light has not be
reported to date. Even when in the future such crystals
exist, position-dependent emission rates will occur at
edges of the crystals. In general, spontaneous-emission
of inhomogeneous dielectrics with a high refractive-ind
contrast, including photonic crystals, are strongly posit
and orientation dependent. Calculated spontaneous-emis
rates in this paper will prove this point. Also, finite-size e
fects will show up in our calculations. The model studi
here is a finite photonic crystal consisting of a finite numb
of parallel and infinitely thin planes. More about our mod
will be said later in this section.

In many experiments, dipole orientations are hard to c
trol. When averaged over dipole orientations, spontaneo
emission rates are proportional to a quantity called the ‘‘lo
optical density of states’’~LDOS! @7,8#. The concept of a
local density of states was borrowed from solid-state phys
The local optical density of states was first named the ‘‘lo
radiative density of states’’@7#, which is the same quantity.

Interestingly, the calculation of position-depende
spontaneous-emission rates also has a bearing on the
pretation of measurements performed with a near-field sc
ning optical microscope. In these measurements, a samp
illuminated through the tip of the microscope, and scatte
light is recorded. In a simple model, the disturbance of
optical field by bringing the tip of the microscope to th
sample is assumed to be weak, and the tip is modeled
dipole with a certain strength and orientation. Then, if t
light scattered in all directions was recorded, the measu
signal would be proportional to the local spontaneo
emission rate at the position of the tip in the absence of
tip @9#.

/
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After the above general considerations, we now turn
the topic of how spontaneous-emission rates inside phot
crystals are actually being calculated. The existence o
band gap in an infinite photonic crystal can be inferred fr
a band structure calculation, which for a three-dimensio
photonic crystals is an art in itself~see the recent review
@10#!. Quite another and more difficult matter is it to calc
late emission rates inside infinite crystals@11,12#. Emission
rates inside or nearfinite photonic crystals are even harder
calculate. Other interesting quantities would be near-field
far-field spectra of internal sources, or dipole-dipole inter
tions and superradiance effects of atoms embedded in a fi
three-dimensional photonic crystal, to name a few comp
processes in a complex environment. In such cases, resu
calculations are hard to check and—even if correct—th
might not give much insight.

It is therefore very useful to study complex processes
simplified models for photonic crystals. Widely used is t
so-called quasi-one-dimensional model~or isotropic model!
for photonic crystals@13#, where it is assumed that the re
edge of the stop bands of the crystal occur at the same b
edge frequency for all three-dimensional propagation dir
tions, and similarly for the blue band edge. Such a mo
will describe qualitatively correct the processes well ins
the band gap, while overestimating effects of the photo
crystal at the edges of the gap. The isotropic model a
neglects all position and orientation dependence of emis
rates outside the band gap. Inspired by the model calc
tions, more realistic numerical calculations have recently
peared that indeed show the weaknesses of the isotr
model @12#.

In this paper another simple model is proposed, one wh
takes into account the strong spatial and orientational de
dence of optical properties and the finite size of the cryst
On the other hand, it gives up the existence of a full ba
gap, as only variations of the refractive index in one dime
sion are considered. Dielectric slabs are modeled as infin
thin planes, which will be calledplane scatterers. A multiple-
scattering formalism is set up in which optical modes and
Green function~a tensor, really! can be calculated exactly fo
crystals consisting of an arbitrary number of plane scatter
The present model is a generalization of previous work t
treated scalar waves only@5#. The inclusion of polarization
of light will turn out not to be straightforward.

Infinitely thin planes were used as model systems in p
tonics before, for example, in Ref.@14# where light propaga-
tion was considered in one dimension only and for an infin
crystal. The model was generalized in Ref.@15#, where infi-
nite photonic crystals were built of infinitely thin planes a
their band structure was determined for waves propagatin
three dimensions. In Ref.@16#, both infinite and finite crys-
tals of planes were considered and their transmission
reflection properties were studied with the use of trans
matrix methods. The infinite crystal was again considered
Refs. @17–20# and named the ‘‘Dirac-comb superlattice
Frequency-dependent emission rates were determined
several positions in the unit cell and both TE@17,19# and TM
waves @18,20# were considered. The periodicity of infinit
crystals gives that Bloch’s theorem can be used in the an
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sis. Finite photonic crystals do not have this advantage
the analysis of the optical properties is usually more difficu
Position-dependent spontaneous-emission rates remain
explored in model photonic crystals consisting of a fin
number of plane scatterers, where light propagation in
three dimensions is taken into account, for both polarizat
directions.

It has been known for a long time that spontaneo
emission rates of atoms change when positioned at dista
of the order of the wavelength of light away from a mirr
@21–23#. A recent surprise was the measurement and anal
that even a distant mirror~25 cm away! can change emission
rates when lenses are used and when the atomic position
controlled with a subwavelength precision~a few nano-
meters! @24,25#.

More complicated than emission near a mirror is it
calculate emission rates of atoms in or near one-dimensi
photonic crystals. A multipurpose formalism for calculatin
optical modes in layered dielectrics@26# was used in Ref.@4#
to calculate emission rates inside finite periodic laye
structures, especially inside structures that reflect light
coming from all directions, the so-called ‘‘omnidirection
mirrors’’ @3#.

Interestingly, light transmission through finite on
dimensional photonic crystals can be found exactly in ter
of the transmission through a unit cell, the numberN of unit
cells, and in terms of the Bloch wave vector of the cor
sponding infinite-crystal structure. In Ref.@27#, this is shown
for a simple unit cell containing two layers, but it was al
proven for general unit cells@28#. This remarkable result wa
reviewed in Ref.@29#, where its importance is stressed n
only in optics but also in acoustics, quantum mechanics,
other branches of physics. In theT-matrix formalism of this
paper~which differs from the usual transfer-matrix metho
for layered dielectrics!, we find similar analytical results
also involving the Bloch wave vector. Such attractive an
lytical results are not available for more complex dielectr
such as finite two-@30,31# or three-dimensional photoni
crystals@32#, so that in those cases the use of efficient n
merical techniques is essential.

The advantage of our plane-scatterer model is that mo
and Green functions~and therefore emission rates! can be
calculated exactly in a Lippmann-Schwinger formalism, f
every finite-crystal size, and that light propagation in all d
rections is taken into account. Lippmann-Schwinger form
isms are more commonly used@33#, but when the finite vol-
umes of dielectric scatterers are fully taken into accou
numerical discretization of the dielectric is required and
model stops being simple@31,34#. To be sure, the simplicity
of our model entails that in some aspects it becomes
realistic, as will be stressed where appropriate.

In Sec. II, multiple scattering of light is introduced an
central equations are derived in representation-indepen
notation. In Sec. III the free-space Green tensor is regu
ized and aT matrix of a plane scatterer for light waves
derived. Section IV discusses all optical modes~propagating
and guided modes, including polarization! that exist in crys-
tals of plane scatterers. Position- and orientation-depen
6-2
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spontaneous-emission rates are calculated in Sec. V. Co
sions can be found in Sec. VI.

II. MULTIPLE-SCATTERING THEORY FOR VECTOR
WAVES

Some important equations of multiple-scattering the
@33# will be presented, mostly in representation-independ
notation, for light in arbitrary inhomogeneous dielectrics.
later sections a particular class of dielectrics will be stud
and a suitable representation is chosen, but then the invo
notation might obscure the general structure of the equati

The wave equation for the electric fieldE0(r ,v) in free
space is

~v/c!2E0~r ,v!2“3“3E0~r ,v!50⇔ ~1a!

$~v/c!2I•2“3“3%E0~r ,v!50. ~1b!

The symbolI denotes the unit tensor in three-dimension
space. The solutions of Eq.~1a! are plane waves with wav
vector k and polarization direction normal tok. With the
free-space wave equation~1a!, a Green tensor~or dyadic
Green function! is associated that satisfies

$~v/c!2I•2“3“3%G0~r ,r 8,v!5d3~r2r 8!I. ~2!

Let L(r ,v) be the quantity between curly brackets in Eq
~1b! and ~2!. Both equations can be considered as the re
space representations of an abstract tensor operatorL(v)
operating on the vector fieldE0(v) and on the Green func
tion G0(v), respectively,

L~v!•E0~v!50, L~v!•G0~v!51^ I. ~3!

The identity operator in real space is denoted by1 and it has
the property^r u1ur 8&5d3(r2r 8); confusion with the unit
tensorI should not arise;̂ denotes the tensor product.

In the presence of an inhomogeneous dispersive lin
dielectric, the wave equation for the electric field is modifi
into

L~v!•E~v!5V~v!•E~v!, ~4!

where the frequency-dependent optical potentialV is defined
in terms of the dielectric function«(r ,v) as

^r uV~v!ur 8&52@«~r ,v!21#~v/c!2Id~r2r 8!. ~5!

Thed-function on the right-hand side defines the potentia
a local quantity~which theT matrix, to be defined shortly, is
not!. In other words, thisd function appears for any poten
tial.

The electric fieldE0(v) is modified intoE(v), and the
two fields are related through the Lippmann-Schwinger~LS!
equation
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E~v!5E0~v!1G0~v!•V~v!•E~v! ~6a!

5E0~v!1G0~v!•V~v!•E0~v!

1G0~v!•V~v!•G0~v!•V~v!•E0~v!1••• ~6b!

5E0~v!1G0~v!•T~v!•E0~v!. ~6c!

One can check that indeed the fieldE(v) that satisfies Eq.
~6a! is also a solution of Eq.~4!. The solution of Eq.~6a! can
be found iteratively in higher and higher orders of the opti
potentialV, as given by the multiple-scattering series in E
~6b!; the ~dyadic! T matrix in Eq. ~6c! by definition is the
formal sum of the infinite summation in Eq.~6b!. The T
matrix is a 333 tensor. By combining Eqs.~6b! and~6c!, the
formal solution for theT matrix is

T~v!5V~v!•@1^ I2G0~v!•V~v!#21. ~7!

The scattering problem is solved exactly once theT matrix is
known.

There may exist optical modes that are bound to the s
terer. Such bound modes correspond to solutions of the
equation~6a! in the absence of an incident field; with Eq.~7!
we can rewrite this homogeneous equation as

T21~v!•V~v!•E~v!50. ~8!

It follows that bound solutions of the electric field will cor
respond to the poles of theT matrix. Actually, Eq.~6c! also
shows that a nonzero solution forE(v) can only occur when
T(v) has a pole. TheT matrix not only solves the scatterin
problem for incident fields but also contains all informatio
about bound modes.

In the presence of the dielectric the Green function a
changes, fromG0 to G. The latter satisfies

@L~v!2V~v!#•G~v!51^ I, ~9!

The solution for the Green function analogous to Eq.~6! for
the electric field is the three-dimensional Dyson-Schwin
equation

G~v!5G0~v!1G0~v!•V~v!•G~v! ~10a!

5G0~v!1G0~v!•T~v!•G0~v!. ~10b!

It can be verified that a solution of Eq.~10a! also is a solu-
tion of Eq.~9!. The problem of how to find such a solution
solved once theT matrix ~7! is determined, because an iter
tion of Eq. ~10a! analogous to the series expansion~6b! for
the electric field shows that the Green function can also
expressed in terms of theT matrix, as given by Eq.~10b!.

Equation~10! also holds when the total potentialV(v) is
a sum of single-scatterer potentialsVa(v). By iterating one
finds that the totalT matrix for an arbitrary numberN of
these scatterers is
6-3
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T(N)5 (
a51

N

Va1(
a,b

Vb•G0•Va1 (
a,b,g

Vg•G0•Vb•G0•Va

1•••. ~11!

Often it is more convenient to make an equivalent expans
in terms of the single-scattererT matrices@33#:

T(N)5 (
a51

N

Ta1 (
a,b(Þa)

Tb•G0•Ta

1 (
a,b(Þa),g(Þb)

Tg•G0•Tb•G0•Ta1•••. ~12!

The frequency dependence was suppressed in Eqs.~11! and
~12!. The form of Eq.~12! of the totalT matrix will be used
later in this paper, for model systems where the infinite su
mation can be performed explicitly.

III. PLANE SCATTERERS FOR VECTOR WAVES

The general results of multiple-scattering theory that w
presented in Sec. II will now be applied to dielectrics th
can be described as a collection of parallel planes. A suita
representation is chosen, and specific forms of the pote
V, the free-space Green functionG0, and the incoming elec
tric field E0 are determined. With this,T matrices for a single
plane and for an arbitrary number of planes are derived.

A. Dyadic Green function in plane representation

A solution for the free-space dyadic Green function c
be found in three-dimensional Fourier space. By translatio
invariance, ^kuG0(v)uk8& must be equal to (2p)3d3(k
2k8)G0(k,v). The Green functionG0(k,v) satisfies

$@~v/c!22k2#I1k2k̂k̂%•G0~k,v!5I. ~13!

Here, k̂ denotes a unit vector in the direction of the wa
vector k. Equation~13! is a 333 matrix equation whose
representation diagonalizes in the polarization ba

$k̂,ŝ1 ,ŝ2% with the longitudinal directionk̂ and two or-
thogonal transverse directionsŝ1,2. The solution of Eq.~13!
is

G0
j j ~k,v!5

1

~v/c!22k2
, G0

k̂k̂~k,v!5~c/v!2, ~14!

where j denotess1 or s2. All six nondiagonal elements o
the Green tensor are zero in this representation. This is
retarded Green function once we assume that the frequ
v has an infinitesimally small positive imaginary part.

The above Fourier representation is not what we need
is convenient to work in the ‘‘plane representation:’’ in tw
dimensional Fourier space in the directions parallel to
planes and in real space in theẑ direction perpendicular to
the planes. For the polarization representation choose th
thonormal basis$ŝk ,v̂k ,ẑ%. Here,ẑ is the unit vector in thez
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direction; v̂k is the unit vector in the direction of the projec
tion of the wave vectork on the plane, so that the wav
vectork has a componentki in the v̂k direction and its full
representation is (0,ki ,kz); the sk-polarization direction is
orthogonal to the optical plane that is spanned by the o
two basis vectors. Then the operatorL(v) has the form

^ki ,zuL~v!uki8 ,z8&5~2p!2d2~ki2ki8!d~z2z8!L~ki ,z,v!,

where the operatorL(ki ,z,v) has the matrix representatio

S ~v/c!22ki
21]z

2 0 0

0 ~v/c!21]z
2 2 ik i]z

0 2 ik i]z ~v/c!22ki
2
D . ~15!

The Green function in the same representation beco
^ki ,zuG0(v)uki8 ,z8&5(2p)2d2(ki2ki8)G0(ki ,z,z8,v), and
the transformed Eq.~13! is a system of differential equations

L~ki ,z,v!S G0
ss G0

sv G0
sz

G0
vs G0

vv G0
vz

G0
zs G0

zv G0
zz
D 5d~z2z8!S 1 0 0

0 1 0

0 0 1
D .

~16!

G0
pq are the components ofG0 and their arguments

(ki ,z,z8,v) were dropped for brevity. By choosing the plan
representation, the matrix elements ofG0 only depend on the
magnitude and not on the orientation ofki . All components
involving ans label are zero, except thess component.G0

ss

satisfies the same differential equation as the Green func
g0 of the Helmholtz equation for scalar waves, so that
v.0 we have

G0
ss~ki ,z,z8,v!5g0~ki ,z,z8,v!5

eikzuz2z8u

2ikz
. ~17!

The variablekz is not independent ofki , but rather an ab-
breviation for @(v/c)22ki

2#1/2. The remaining coupled dif-
ferential equations of Eq.~16! can also be solved~again for
v.0), now thatG0

ss is known:

G0
vv~ki ,z,z8,v!5

kz
2

~v/c!2
g0 , ~18a!

G0
vz~ki ,z,z8,v!52

kikz

~v/c!2
g0 sgn~z2z8!, ~18b!

G0
zv~ki ,z,z8,v!5G0

vz, ~18c!

G0
zz~ki ,z,z8,v!5

1

~v/c!2
@ki

2g01d~z2z8!#. ~18d!

Green functions in the right-hand sides are understood
have the arguments (ki ,z,z8,v). The above method of solv
ing differential equations does not give a value for t
6-4
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signum function whenz is equal toz8. The Green-function
components~18! can alternatively be found from an invers
Fourier transformation

G0~ki ,z,z8,v!5
1

2pE2`

`

dkz8G0~ki ,kz8 ,v!eikz8(z2z8).

~19!

This integration can only be performed in a representa
that does not corotate withkz8 . The basis of Eq.~14! is not

adequate, but again the basis$ŝk ,v̂k ,ẑ% suits well. With this
Fourier method one finds the value 0 for the signum funct
in Eq. ~18b! when z equalsz8: for z5z8 the relevant inte-
grands in Eq.~19! are antisymmetric in the variablekz8 .

B. Regularization of the Green function

TheT matrix of a plane scatterer for vector waves can
found by solving the appropriate Lippmann-Schwinger eq
tion ~6!. A plane wave incident fromz52` with wave vec-
tor k and arbitrary amplitudeE0 and transverse polarizatio
vector sk5(ss ,sv ,sz) is scattered by a plane atz5za .
Because of the symmetry in the in-plane directions, it is c
venient to choose the plane representation for the LS e
tion. In terms of the Dirac notation, the electric field is
‘‘ket;’’ the plane representation is found by taking the inn
product of Eq.~6! for the electric field with the ‘‘bra’’̂ ki ,zu,
and by inserting the unit operator

1

~2p!2E d2ki8dz8uki8 ,z8&^ki8 ,z8u ~20!

at the positions of the dots in the representation-indepen
equation ~6!. The incident field takes the form
Eks,0(ki ,z,v)5E0skexp(ikzz). The solution of the LS equa
tion corresponding to this incident field isEks(v). The LS
equation in the mixed representation becomes

Eks~ki ,z,v!

5E0ske
ikzz

1E
2`

1`

dz8G0~ki ,z,z8,v!•V~z8,v!•Eks~ki ,z8,v!.

~21!

A plane is assumed to be infinitely thin and it can be d
scribed by the optical potentialV(z,v)5V(v)d(z2za)I. ~A
specific model potential will be chosen in Sec. III F.! The
integral can be evaluated immediately and we get

Eks~ki ,z,v!5E0ske
ikzz

1V~v!G0~ki ,z,za ,v!•Eks~ki ,za ,v!.

~22!

The usual way to solve this equation would be to put
position z equal toza and to solve forEks(ki ,za ,v). The
result would then be inserted back into the above equatio
obtain an expression forEks(ki ,z,v).
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However, the Green tensorG0 is not defined when the
positionsz andza are identical, because of thed function in
the componentG0

zz @Eq. ~18d!#. One could just neglect thed
function, as might be correct in other situations@35#, but it
will be argued in Sec. III C that this procedure would b
wrong in our case. Therefore, the Green tensor~18! is not
suited for setting up a theory for the scattering of vec
waves by infinitely thin planes.

It is known that ‘‘regularization’’ of Green functions is
sometimes needed when modeling finite-sized scatterer
mathematical objects with zero volume, in order to have
model that is relevant for optics.~Regularization was no
needed for scalar waves scattering off planes@5#.! In a regu-
larization procedure, usually a cutoff parameter is introduc
that modifies the behavior of Green functions at distan
much smaller than optical wavelengths, and mathemat
problems are thus overcome. In some cases, the regula
tion parameter can be sent to infinity in the final stage, wh
in other cases the cutoff parameter must be kept finite.
example, for point scatterers the problem of diverging Gre
functions occurs both for scalar and for vector waves. Po
scatterers have been studied extensively and several reg
ization schemes have been proposed~see Ref.@36# and ref-
erences therein!.

The same regularization procedure will now be chosen
plane scatterers as was done before for point scatterers@36#.
A high-momentum cutoff is introduced in three-dimension
Fourier space. Instead of the free-space Green func
G0(k,v) of Eq. ~14!, a regularized free-space Green functi
G̃0(k,v) will be used. The latter is defined in terms of th
former as

G̃0~k,v!5S L2

L21k2D G0~k,v!. ~23!

The cutoff momentumL is assumed to be much larger tha
the magnitudev/c of the optical momentum, so that at op
tical wavelengthsG̃0.G0. The effect of this cutoff in the
real-space representation is also known@36#. Here its effect
on the Green function in the plane representation is imp
tant. After an inverse Fourier transformation, again only
the z direction, one obtains~again forv.0)

G̃0
ss~ki ,z,z1 ,v!5

L2

L21~v/c!2 S g01
e2L iuz2z1u

2L i
D , ~24a!

G̃0
vv~ki ,z,z1 ,v!5

kz
2c2

v2
G̃0

ss, ~24b!

G̃0
vz~ki ,z,z1 ,v!52

L2sgn~z2z1!

L21~v/c!2

ki

~v/c!2

3@kzg01~ i /2!e2L iuz2z1u#, ~24c!

G̃0
zv~ki ,z,z1 ,v!5G̃0

vz, ~24d!
6-5
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G̃0
zz~ki ,z,z1 ,v!5

L2

L21~v/c!2 F ki
2c2

v2
g0

1
L i

21~v/c!2

2L i~v/c!2
e2L iuz2z1uG . ~24e!

In the right-hand sides, the arguments (ki ,z,z1 ,v) of the
Green functions were dropped;L i is short-hand notation fo
(L21ki

2)1/2; again, the signum function is zero when its a
gument is.

All components of the regularized Green tensor consis
two parts: an oscillating and a decaying part, as a function
uz2z1u. The decay occurs at a distance that is a tiny fract
of an optical wavelength. ForLuz2z1u*1, the regularized
Green function approaches the unregularized one. If
would take the limitL→`, then all the components in Eq
~24! approach the unregularized components of Eq.~18!, and
in particular the limit of the last term inG0

zz gives thed
function that made the regularization procedure necess
However,L is kept finite for the moment, so thatG̃0

zz has a
finite term that grows withL. With this result, the Green
function regularization is complete and a theory of scatter
by vector waves from plane scatterers can be set up.

C. T matrix of a plane for vector waves

The regularization entails that the Green function is
placed by its regularized version in the LS equation~21!. For
z5za that equation becomes
t

.
t

o
or
at

io
t

01661
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S Eks
s ~ki ,za ,v!

Eks
v ~ki ,za ,v!

Eks
z ~ki ,za ,v!

D
5E0S ss

sv

sz

D eikzza1V~v!S G̃0
ss 0 0

0 G̃0
vv 0

0 0 G̃0
zz
D

3S Eks
s ~ki ,za ,v!

Eks
v ~ki ,za ,v!

Eks
z ~ki ,za ,v!

D . ~25!

HereG̃0
ss stands forG̃0

ss(ki ,za ,za ,v), and similarly for the
other components. The off-diagonal elements of the Gr
tensor are all zero when the positionz is equal toza , so that
the equation can be solved for every component separa
By inserting this result into the LS equation for generalz,
one finds

Eks~ki ,z,v!5Eks,0~ki ,z,v!

1G̃0~ki ,z,za ,v!•T̃~ki ,v!•Eks,0~ki ,za ,v!,

~26!

where theT matrix for scattering from a plane by arbitraril
polarized light is given by
T̃~ki ,v!5S V~v!

12V~v!G̃0
ss

0 0

0
V~v!

12V~v!G̃0
vv

0

0 0
V~v!

12V~v!G̃0
zz

D . ~27!
h

For
-

The scattering of thes-polarization component of the ligh
can be considered independently from thev̂ andẑ directions,
according to Eqs.~26! and ~27!. It can be verified with Eqs
~24! and ~27! that, sinceL@(v/c), the matrix componen
T̃ss for all practical purposes is equal to theT matrix for
scalar waves, and the same holds for the Green tensor c
ponent G̃0

ss: the regularization was not necessary f
s-polarized light and fortunately it does not affect the sc
tering properties ofs-polarized light.

The need for regularization did show up in the descript
of scattering ofp-polarized light, and there the cutoff migh
m-

-

n

influence light scattering. Incomingp-polarized light is char-
acterized by its amplitudeE0, wave vectork, and its polar-

ization state ŝ5 p̂[(kz /k) v̂k2(ki /k) ẑ. Written out

explicitly, the incoming field is Eks,0(ki ,z,v)

5E0(0,kz /k,2ki /k)exp(ikzz). For distances far enoug

from the plane so thatLuz2zau@1, the termG̃0
vzT̃zz in

Eq. ~26! falls off asL21 and G̃0
zzT̃zz as exp(2Liuz2zau), so

that for optical purposes these terms can be neglected.
finite very largeL we arrive at the following effective de
scription:
6-6
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S Es~z!

Ev~z!

Ez~z!
D 5S E0

v~z!

E0
v~z!

E0
z~z!

D 1S G0
ss 0 0

0 G0
vv G0

vz

0 G0
zv G0

zz
D

3S Tss 0 0

0 Tvv 0

0 0 0
D S E0

s~za!

E0
v~za!

E0
z~za!

D , ~28!

where the ss-component of theT matrix is equal to
V(v)@12V(v)G0

ss#21, and analogously for the
vv-component. The Green functions have argume
(ki ,z,za ,v). In this effective description—where theT ma-
trix is denoted byT rather thanT̃—the cutoff parameterL
does not occur anymore. The cutoff was necessary in ord
set up a scattering theory and it shows up in the element
the scattering theory such as theT matrix ~27! and the regu-
larized Green function~24!. It does not show up in the elec
tric field, and precisely this enables us to arrive at the eff
tive description. Note also that the~large! value of G0

zz has
become irrelevant.

The effective description that is obtained here afte
regularization is different from a theory where thed function
in G0

zz @see Eq.~18d!# would simply be removed@35#. Leav-
ing out thed function in the LS equation~21! will result in a
nonzeroTzz, in contrast with Eq.~28!. Furthermore, theT
matrix would have the unwanted effect that the transmit
part of an incoming wave would not be parallel to the inco
ing wave. The conclusion is that a regularization of t
Green function was necessary, even when in the end
cutoff could be sent to infinity.

Equation~28! defines a true mode of the electromagne
field in the presence of a single plane scatterer, in terms
linearly polarized incoming plane wave with arbitrary ang
of incidence. This is not the complete set of modes. Ot
modes, not corresponding to an incoming wave, will be d
cussed in Sec. IV B, both for a single plane and for a cry
of planes.

D. Transmission and energy conservation

The transmission of light through the plane can be fou
by choosingz.za in Eq. ~28!. The transmitted wave can b
expressed in terms of the incoming wave asEks(ki ,z,v)
5t(ki ,v)•Eks,0(ki ,z,v), with the transmission matrix

t~ki ,v!5S tss~ki ,v! 0 0

0 tvv~ki ,v! 0

0 tzv~ki ,v! 1
D , ~29!

which has nonzero elements t j j (ki ,v)5@12
V(v)G0

j j (ki ,za ,za ,v)#21 for j 5s,v. Furthermore,
tzv(ki ,v)5Gzv(ki ,za ,za ,v)Tvv(ki ,v). Both for purely
s-polarized and for purelyp-polarized light, the transmitted
electric field is a polarization-dependent scalar times the
coming electric-field vector.

Energy conservation puts a constraint~called ‘‘optical
theorem’’! on the form that theT matrix of an elastic scat
01661
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to
of
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terer can take. The optical theorem for a plane that scat
scalar waves was found before@5#. Sinces waves map on
scalar waves, the optical theorem for thess component of
the T matrix can be given immediately:

Im Tss~ki ,v!52
1

2

uTss~ki ,v!u2

kz
. ~30!

The most generalT matrix satisfying this requirement has th
form

Tss~ki ,v!52@Fs
21~ki ,v!2 i /~2kz!#

21, ~31!

where the optical potentialFs(ki ,v) must be a real-valued
function.

For reflection and transmission ofp-polarized light, only
the matrix elementTvv is important. Again, we are intereste
in the form that this matrix element can take when opti
energy is conserved. This is the case when theẑ component
of the Poynting vector is the same before and after the pla
An incomingp-polarized plane wave gives the electric fie
~28!. With a Maxwell equation the accompanying magne
field B can also be found. In SI units, and in terms of t
complex fieldsE andB, the cycle-averaged Poynting vecto
is equal to Re@E* (r ,t)3B(r ,t)#/(2m0) @37#. When a har-
monic wave of frequencyv coming fromz52` scatters off
the plane, the Poynting vector is proportional to
2(kzc/v)2uTvvu2/4 for z,za . At the other side of the plane
one findsu12 ikz(c/v)2Tvv/2u2. By equating the two, the
optical theorem for a plane that scattersp-polarized light is
found to be

Im Tvv~ki ,v!5
2kz

2~v/c!2
uTvv~ki ,v!u2. ~32!

This differs from the optical theorem fors-polarized light.
Also, the most general solution of the optical theorem
different:

Tvv~ki ,v!52FFp
21~ki ,v!2

ikz

2~v/c!2G21

, ~33!

where the optical potentialFp(ki ,v) is real.

E. T matrix for N planes

Now that the Green function and theT matrix of a single
plane are known, a multiple-scattering theory can be set
Assume that there areN plane scatterers, placed at arbitra
positions. Assume them to be parallel, so thats- and
p-polarized light do not mix in the scattering process.

In the general expression~12! for the T matrix of a com-
plex dielectric in terms of its simple parts, Green functio
are always sandwiched betweenT matrices of scatterers a
different positions. For unequal plane positionsza and zb ,
the value ofG̃0(ki ,zb ,za ,v) is finite and it can be taken to
be equal to the unregularizedG0(ki ,zb ,za ,v), because dif-
ferent planes are at optical distances apart. Further reg
6-7
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izations are therefore not required in order to find t
N-planeT matrix.

As shown in the Appendix, higher-order terms in the s
ries~12! correspond to higher-order matrix multiplications
N3N matrices. The multiplication property makes that f
parallel planes, the series~12! can be summed exactly. In th
Appendix it is shown how the summation can be done e
in the general case where all planes may have different
tical properties, and are placed at arbitrary noncoincid
positions. Here we specify that all planes are identical. T
gives the central result of this section, theN-planeT matrix
for scattering by vector waves:

T(N)~v!5
1

~2p!2E d2ki (
a,b51

N

uki ,za&Tab
(N)~ki ,v!^ki ,zbu.

~34!

Eachab componentTab
(N)(ki ,v) is a 333 matrix; the only

two nonzero spatial components are

Tab
ss,(N)5Tss@ IN2W sT

ss#ab
21 , ~35a!

Tab
vv,(N)5Tvv@ IN2W vTvv#ab

21 , ~35b!

Here, IN is the N3N unit matrix. Arguments (ki ,v) were
temporarily dropped for readability. TheN2 matrix elements
(Wj )ab(ki ,v) are defined as (12dab)G0

j j (ki ,za ,zb ,v),
for j 5s,v. The calculation ofT(N)(ki ,v) boils down to the
inversion of anN3N matrix for the two transverse polariza
tion directions separately.

From now on, assume that theN planes are placed a
regular distances from each other, with a spacinga between
neighbors. The necessary matrix inversions in Eq.~35! can
then be performed analytically for both polarization dire
tions. Thes-wave case maps identically on the situation
scalar waves, for which the analytical inversion was d
cussed at length in Ref.@5#; for p waves the inversion trick
goes analogous and it will not be presented here.

A result from the analytical inversion is thatT-matrix el-
ements and therefore the optical properties of theN-plane
crystal strongly depend on the Bloch wave vectorsKs(ki ,v)
andKp(ki ,v). For p-polarized light the Bloch wave vecto
is given by arccos(Cp)/a, with Cp5cos(kza)1Cp8sin(kza);
the constantCp8 in terms of the single-planeT matrix is

ikz@kzuTvvu212~v/c!2ImTvv#12kz~v/c!2ReTvv

kz
2~ReTvv!21@2~v/c!21kzIm Tvv#2

. ~36!

In general,Cp is a complex constant. However, if the optic
theorem~32! holds, then the imaginary part ofCp becomes
identically zero, and the single-planeT matrix will be of the
form ~33!. Likewise, Ks is defined as arccos(Cs)/a for a
quantityCs that becomes real when the optical theorem,
~30!, for s-polarized light holds@5#. In those cases, the ex
pressions forCs,p become rather simple,

Cs5cos~kza!2S Fs~ki ,v!

2kz
D sin~kza!, ~37a!
01661
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Cp5cos~kza!2S kzc
2Fp~ki ,v!

2v2 D sin~kza!. ~37b!

F. A model for the optical potential

The most generalT matrices~31! and ~33! feature as yet
unspecified optical potentialsFs,p . These should be rea
when energy is conserved, but for the rest they can be a
trary functions with the frequency and the in-plane wa
vector as variables.

In Ref. @5#, plane scatterers were introduced as a sim
fied model for dielectric slabs of finite thicknessd and non-
dispersive dielectric function«(v)5«. The optical potential
for the plane scatterer in this model is obtained via the li
iting process of making the thicknessd of the dielectric slab
smaller and increasing the polarizability («21), while keep-
ing their product constant and equal to the ‘‘effective thic
ness’’ Deff . ~The quantity Deff /a is called the ‘‘grating
strength’’ in Refs.@19,20#.! Following the same limiting pro-
cedure as in Ref.@5#, we find the optical potentia
Fs,p(ki ,v)52V(v)5Deff(v/c)2, identical for the two po-
larizations. Spatial dispersion and anisotropy would ha
shown up in the optical potentials as aki andk̂i dependence,
respectively. These two phenomena were neglected alre
as early as in the wave equation~4!.

In general,p-polarized light differs froms-polarized light,
in that the former will have a Brewster angle at which
light is reflected from a dielectric interface (n1→n2). The
Brewster angleuB equals tan21(n2 /n1). In the limiting pro-
cedure for going from a finite slab-in-air to an infinitely th
plane-in-air, the dielectric contrastA«/1 goes to infinity and
consequently the Brewster angle becomes 90° in that lim
Therefore, in our limiting procedure, a plane scatterer w
not have a Brewster angle at the same angle as the fi
dielectric slab that one starts out with. In line with this,
Ref. @15# a single-plane reflection forp-polarized light was
determined that is nonzero for all angles of incidence. T
p-polarized propagating modes for a system of plane sca
ers will therefore differ substantially from the correspondi
modes in a slab structure. The absence of a Brewster e
was also noticed in Ref.@18# where the infinite-crystal ver-
sion of the plane-scatterer model is treated.

IV. OPTICAL MODES AND OMNIDIRECTIONAL
MIRRORS

A. Propagating modes

The optical modes are the harmonic solutions of the w
equation ~4!. With the solution~34! of the T matrix, the
modes that correspond to a nonzero incoming plane w
can be given explicitly as

Eks~ki ,z,v!

5E0ske
ikzz

1(
a,b

G0~ki ,z,za ,v!•Tab
(N)~ki ,v!•skE0eikzzb.

~38!
6-8
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These propagating~or radiative! modes are labeled by th
incoming wave vectork and polarizationsk . The sine of the
angle of incidence~with respect to a vector normal to th
planes! is equal tokic/v. The amplitudes of thes-polarized
modes@with sk5(1,0,0)] are identical to the correspondin
amplitudes for scalar waves; thep-polarized modes@sk
5(0,kz /k,2ki /k)# have no scalar analogs.

For light with wave vector and frequency such thatCs,p
.1 @see Eq.~37!#, the Bloch wave vector is purely imag
nary for the elastic scatterers that we consider. Similarly,
Cs,p,21, the Bloch wave vector equalsp plus an imagi-
nary number. In both situations the light will feel a sto
band, meaning that it will be 100% reflected when falling
a semi-infinite system of planes. Otherwise, when21
,Cs,p,1, the Bloch wave vector is real and light ca
propagate inside the crystal. More will be said about
Bloch wave vectors later in this section.

Some plots of mode profiles will now be presented. A
sume that light comes in from the left. For perpendicula
incident light, there is no difference betweens andp polar-
ization. In Fig. 1 the mode profiles~or squared absolute va
ues of mode functions! for s- andp-polarized light inside a
ten-plane crystal are compared both for an incoming angl
30° and for 60°. Figure 1~a! shows that at an angle of 30
the mode profiles corresponding to both polarizations do
differ much yet. Both modes decay rapidly inside the crys
structure and are reflected~almost! completely. The Bloch
wave vectors are complex for both polarizations. Only
the s wave the polarization directions of the incoming a
the reflected wave are equal, so that the amplitude of
mode profile at the left side of the crystal is four times t
amplitude of the incoming electric field.

The situation is different at an incoming angle of 60°,
shown in Fig. 1~b!. The mode profile of thes-polarized light
again rapidly decays inside the crystal~and the correspond
ing Bloch wave vector again has an imaginary part!, whereas
the p-polarized light can propagate inside the crystal and
transmitted almost completely~and the Bloch wave vector i
real!. For this frequency and incoming angle, the crystal i
good polarization filter.

The mode profiles in Figs. 1~a,b! of thes-polarized waves
are continuous whereasp-polarized waves are discontinuou
at the positions of the planes. This reflects the boundary c

FIG. 1. Squares of absolute values of mode functions
s-polarized~solid lines! and p-polarized light~dashed lines!, as a
function of position. The light is scattered by a crystal of ten plan
with Deff50.46a, separated by a distancea. Both modes corre-
spond to light incoming from the left witha/l50.5. Panel~a!,
u in530°; panel~b!, u in560°.
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ditions: the tangential components of the electric fields m
be continuous and the normal components must show a j
at a dielectric interface. The electric field ofs-polarized light
only has a tangential component, whilep-polarized light con-
sists of both tangential and normal components. This
plains the differences in the mode profiles fors andp waves.
Notice that in our Green-function formalism, boundary co
ditions are automatically satisfied, whereas in related w
based on transfer-matrix methods, boundary conditions m
be considered explicitly@15,16,20#.

Reflection as a function of frequency by the ten-pla
Bragg mirror is plotted in Fig. 2 for both polarization direc
tions. The reflectionuru2 equals (12utu2), with utu2 the
~relative! transmitted light intensity. For light incident pe
pendicularly to the planes, both transverse polarization v
tors are equivalent and accordingly in Fig. 2~a!, the graphs
for s- andp-polarized light overlap. Differences between th
two polarizations do appear for non-normal incidence.
Fig. 2~b! the angle of incidence is 60°. The red edges of
stop bands fors-polarized light move to slightly higher fre
quencies and the widths of the stop bands become larger
p-polarized light the red edges of the stop bands shift to
blue much faster, and the faster so for larger angles of in
dence.

For scalar waves, a crystal of plane scatterers can b
omnidirectional mirror@5#, which means that waves exper
ence a stop band for all angles of incidence. For vec
waves, the crystal will only be an omnidirectional mirror
there are frequency intervals in which the crystal is an o
nidirectional mirror both fors andp waves.

As stated earlier, it is the Bloch wave vectorsK that dis-
tinguish between light that can propagate inside the cry
~realK) and light that feels a stop band~whenK is an imagi-
nary number orp plus an imaginary number!. In our formal-
ism, the Bloch wave vectors are the arccosines of the c
stantsCs andCp given in Eq.~37!. As is shown in detail in
Ref. @5#, these Bloch wave vectors show up in expressio
for the N-plane T matrix T(N). It must be said that in the
presentT matrix formalism it is not obvious simply by look
ing at the equations that a stop band occurs whenever
Bloch wave vector has a nonzero imaginary part. Nevert
less, we conclude from our numerical calculations that
relation does exist. To give an example, of the four mode
the Figs. 1~a,b!, only thep-polarized light incoming at 60°

r

s

FIG. 2. Reflection off a ten-plane crystal, as a function ofa/l,
for s-polarized light ~solid lines! and p-polarized light ~dashed
lines!. Angles of incidence are 0° in~a! and 60° in~b!. The planes
have effective thicknessDeff50.46a and they are separated by
distancea. In ~a!, the graphs fors andp polarization overlap.
6-9
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has a corresponding real Bloch wave vector. It is an inter
ing fact that the Bloch wave vector, the role of which
obvious in infinite crystals, also plays an important role
finite periodic structures. This was already noticed before
the context of transfer-matrix methods@27–29#; here we see
the importance of the Bloch wave vector for finite period
structures in aT-matrix formalism.

For light of a frequency corresponding toa/l50.5 and
planes withDeff50.46a, the s waves are reflected omnid
rectionally @5#. In Fig. 3 we plot both constantsCs and Cp
for this frequency, as a function of angle of incidence. Unl
for s waves, forp waves there are incident angles larger th
the critical angleuc*55° for which the values ofCp are
between21 and 1. Light incident with these large angl
can propagate inside the crystal and therefore the cryst
not an omnidirectional mirror for this frequency. Actuall
this information could already be read off from the mo
profile of p-polarized light incident at 60° in Fig. 1~b!. The
conclusion holds more generally: for largerDeff the critical
angle uc increases, but it can be shown by expanding
~37b! aroundu in590° that for every finiteDeff /a and a/l
there always is a finite interval of angles corresponding
propagatingp-polarized light. In conclusion, crystals of iden
tical and equidistant plane scatterers can reflect vector w
in almost all~but not in all! directions.

B. Guided modes

Besides propagating modes there can also be bo
modes that do not correspond to incoming light~see Sec. II!.
Bound modes can be found by solving the LS equation in
absence of an incoming field. In crystals of plane scatter
bound modes are guided modes. They have imaginary w
vectors in thez direction and they decay exponentially aw
from the planes. Their in-plane wave vectorski are larger
thanv/c. With each mode, be it of the propagating or guid
type, a nonzero local density of states is associated. In
following, guided modes will be searched by looking f
nonzero densities of states.~This is a method alternative t
the one used in Ref.@5# where guided modes of scalar wav
were identified.!

FIG. 3. ConstantsCs and Cp as a function of angle of the in
coming light, for the parametersa/l50.5 andDeff50.46a. Re-
gions where21<C<1 correspond to propagating waves insi
the crystal.
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For vector waves, the local optical density of stat
N(r ,v) is defined by@7#

2@~2v!/~pc2!#Im Tr G~r ,r ,v!, ~39!

so it is a scalar proportional to the trace over the imagin
part of the Green tensorG(r ,r ,v). In planar geometries the
latter can best be found as an integral over the Green te
in the plane representation:

G~r ,r ,v!5
1

~2p!2E d2kiG~ki ,z,z,v!. ~40!

The local density of states can only be nonzero if the ima
nary part of the integrand in~40! is nonzero. A guided mode
manifests itself when diagonal elements of this integra
G(ki ,z,z,v) have nonzero imaginary parts for a certainki
.v/c. For the crystals of plane scatterers the Green ten
directly follows from the Dyson-Schwinger equation:

G~ki ,z,z8,v!

5G0~ki ,z,z8,v!

1 (
a,b51

N

G0~ki ,z,za ,v!•Tab
(N)~ki ,v!•G0~ki ,zb ,z8,v!.

~41!

All three diagonal components ofG0(ki ,z,z8,v) become
real quantities forki.v/c, and indeed there are no guide
modes in free space. On the other hand, the off-diago
elements G0

vz5G0
zv become purely imaginary whenki

.v/c and the latter elements do show up in the diago
elements ofG. However, since they always show up
paired products, for example, in the termG0

zvTab
(N),vvG0

vz ,
they also give a real contribution to diagonal elements ofG.
The T-matrix elements are also real whenki.v/c, except
when the matrix has a pole. Therefore, all guided mo
must correspond to poles of thes or p components of the
N-planeT matrix T(N) @see Eq.~35!#.

First, the guided modes of a single plane will be det
mined. There can be a guided mode when eitherTss or Tvv in
Eq. ~28! has a pole. NowTss has a pole when 1
2V(v)G0

ss(ki ,za ,za ,v) vanishes. Using the same mod
for the optical potential as in Sec. III F, we find the dispe
sion relationk1

(1)5Deff(v/c)2/2 for one and only one guided
mode corresponding tos-polarized light. Here,k is the posi-
tive square root@ki

22(v/c)2#1/2 for ki.v/c. A single-plane
guided mode with this dispersion relation was also found
Ref. @15#, and in Ref.@5# for scalar waves.

A pole of Tvv occurs when 12V(v)G0
vv(ki ,za ,za ,v)

vanishes, which is equivalent to the requirement thatDeffk/2
equals21. Now, in principle,Deff could be negative when
modeling a slab of negative dielectric function as a pla
scatterer. However, in the physical situations that we are
terested in, the effective thickness is real and positive~see
Sec. III F!. Therefore, there is no guided mode correspond
to p-polarized light for a single-plane scatterer. This res
6-10
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was also derived in Ref.@15#, where only the cases of
single plane and infinitely many planes were considered

At this point it is worthwhile to compare the guide
modes of a dielectric slab~thicknessd, dielectric constant«)
in air with the guided modes of an infinitely thin plane wi
effective thicknessDeff5(«21)d. For the slab, the numbe
M of guided modes is the same for both polarizations in
special case considered here, and equal to@38#

Ms,p511@2dA«21/l#. ~42!

Here,@X# stands for the largest integer smaller than or eq
to X. In the large-wavelength limit there is a single guid
mode for each polarization direction. The second guid
mode appears whena/l5a/(2AdDeff). For example, ford
50.1a andDeff50.46a, a second guided mode exists wh
a/l.2.3. We are interested in frequencies arounda/l
50.5, where the first stop band for normally incident lig
occurs ~see Fig. 2!. For these frequencies, both the pla
scatterer and the dielectric slab have a singles-polarized
guided mode; the slab has a singlep-polarized guided mode
whereas the plane scatterer has no such guided mode a

Now we determine the guided modes of a finite crysta
N parallel and equidistant planes, using the same Gre
function method as for the single plane. First look for t
poles of the componentTab

ss,(N)(ki ,v). This is easy, becaus
this component is identical to theN-planeT matrix T(N) for
scalar waves, for which it was found that there are at mosN
guided modes in a crystal ofN planes@5#. For an infinite
number of planes, the guided modes form a band, as
found in Refs.@15,19#. Now look for guided modes corre
sponding top-polarized light. The poles of the compone
Tab

vv,(N)(ki ,v) occur when the determinant det@(Tvv,(N))21#
is equal to zero. An expression for this determinant can
found just as was done for scalar waves in Ref.@5#. The
result is that forp-polarized light there are guided modes
the following equation has nontrivial solutionsv(k):

sin@~N11!Kpa#1FkF22~v/c!2

2~v/c!2 Ge2kasin~NKpa!50.

~43!

The Bloch wave vectorKp is still defined asa21 times the
arccosine of Cp , which reads Cp5cosh(ka)
1@(kc2F)/(2v2)#sinh(ka) in terms ofk.

Equation~43! should lead to the dispersion relationsv(k)
for the guided modes, if they exist. When increasing
frequency, new guided modes would appear that at first
only just captured by the structure so thatk501. It is there-
fore convenient to count the guided modes in the smak
limit. Let the constantx be defined asaA11Fc2/(av2).
ThenCp can be written up to second order ink as

Cp511~xk!2/21o~k3!5cosh~xk!1o~k3!. ~44!

To the same order ink, the Bloch wave vectorKp becomes
equal to ixk/a. Therefore, solutions of Eq.~43! will only
exist when sinh@(N11)xk# equals sinh(Nxk), or equivalently
when x[0. SinceF is taken to beDeff(v/c)2, there are
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guided modes forp-polarized light whenever 11Deff /a
50. So in finite crystals ofN planes with a positive effective
thickness, there are no guided modes corresponding
p-polarized light. This is in agreement with the result ju
obtained for the single plane, and with the results in Re
@15,20# for infinite crystals.

In conclusion, there are at mostN guided modes in the
finite crystal of plane scatterers, all modes corresponding
s-polarized light. The comparison of the single plane and
single slab indicates thats waves in plane scatterers are
good model fors waves in slabs, at least for frequenci
around the first stop band. For thep-polarized guided modes
the conclusion must be that in the finite slab structures th
are guided modes which have no analogs in the crysta
plane scatterers.

V. SPONTANEOUS EMISSION

A. Application to layered dielectrics

In free space, the spontaneous-emission rateG0 of an
atom with dipole momentm and transition frequencyV
equalsm2V3/(3p\«0c3). When embedded in an inhomoge
neous dielectric, the rateG will in general be different, as can
be found with Fermi’s golden rule@39#,

G~m,R,V!5p(
l

v l

\«0
um•El~R!u2d~v l2V!. ~45!

El are the normal-mode solutions with eigenfrequenciesv l
of the wave equation~4!. The spontaneous-emission rate c
alternatively be expressed in terms of the Green function
the medium

G~m,R,V!5
22V2

\«0c2
Im@m•G~R,R,V!•m#. ~46!

~See Ref.@40# for early derivations of this relation; in Ref
@41# a modern derivation is given for inhomogeneous a
absorbing dielectric media.! In Eq. ~46!, G is the classical
dyadic Green function of the electric-field wave equation~4!.
For homogeneous dielectrics, it is known that the total Gre
function is the sum of a transverse part that describes ra
tive decay and a longitudinal part describing nonradiat
decay@42#. Here, Eqs.~45! and~46! are equivalent, becaus
nonradiative decay is absent for dielectrics with real diel
tric functions.

Layered dielectrics~not necessarily plane scatterers! are
translation invariant in two directions, which can be chos
to be the (x̂,ŷ) directions. Spontaneous-emission rates w
only depend on thez coordinate of the atomic positionR
5(x,y,z). It is then easiest to first calculate the Green fun
tion in the plane representationG(ki ,z,z,V). This Green
function must be Fourier transformed back to real space a
Eq. ~40! in order to find the local Green function of Eq.~46!
that determines spontaneous-emission rates.

A slight complication in doing the integration~40! is that
the plane representation forG(ki ,z,z,V) is corotating with
the incoming wave vectorki , a variable that must now be
6-11
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integrated over. A fixed basis$x̂,ŷ,ẑ% is needed instead and
is chosen such that the atomic dipole becomes (mx,0,mz) in
the new representation. Write the two-dimensional integ
*d2ki in polar coordinates as*0

`dkiki*0
2pdk̂i . After doing

the angular integration, only diagonal elements of the dya
Green function survive.

The total spontaneous-emission rate is the sum of
contributions, the perpendicular and the parallel decay ra

Gz~z,V!52
3cG0mz

2

Vm2
ImE

0

`

dkikiG
zz, ~47a!

Gx~z,V!52
3cG0mx

2

Vm2
ImE

0

`

dkiki
Gss1Gvv

2
. ~47b!

@Green-function arguments (ki ,z,z,V) were again dropped.#
The parallel decay rate has a contribution both froms- and
p-polarized light ~through Gss and Gvv, respectively!
whereas the perpendicular decay rate only has ap-polarized
decay channel ~through Gzz). Notice that the ~real!
d-function term inG0

zz does not play a role in the emissio
rates. The spontaneous-emission rates in Eqs.~47a! and
~47b! are integrals over all possible lengths of the in-pla
wave vector. Both rates can be subdivided into
propagating-mode~or radiative-mode! rate corresponding to
the integration ofki from 0 toV/c, and a guided-mode rat
which is the integral fromV/c to `.

B. Spontaneous emission near plane scatterers

The general expressions obtained in Sec. V A for spon
neous emission in layered structures will now be applied
crystals of plane scatterers. Combine the general express
~47! for spontaneous-emission rates in layered dielect
with the Green functions in the plane representation t
were determined in Eq.~41! for a crystal of plane scatterers
Because of the absence ofp-polarized guided modes, th
parallel decay rate near plane scatterers can be subdiv
into three ~instead of four! parts: ans-polarized radiative-
mode rate (sr), a p-polarized radiative-mode rate (pr), and
ans-polarized guided-mode rate (sg). Again, because of the
absence ofp-polarized guided modes, the perpendicular d
cay rateGz is purely radiative. Here is a list of the nonze
partial decay rates:

Gx
sr~z,V!52

3cG0

2V S mx

m D 2

ImE
0

V/c

dkikiG
ss, ~48a!

Gx
pr~z,V!52

3cG0

2V S mx

m D 2

ImE
0

V/c

dkikiG
vv, ~48b!

Gx
sg~z,V!52

3cG0

2V S mx

m D 2

ImE
V/c

`

dkikiG
ss ~48c!

Gz~z,V!52
3cG0

V S mz

m D 2

ImE
0

V/c

dkikiG
zz. ~48d!
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To be precise, in Eq.~48d! it was used that the tensor ele
mentGzz has a vanishing imaginary part~leading to a van-
ishing contribution to the density of states! for ki.V/c; for
the same reason, there is no guided-mode rate analogo
Eq. ~48c! corresponding toGvv. These properties were foun
in Sec. IV B.

With all partial emission rates spelled out now, we fir
study spontaneous-emission rates near a single plane
which the Green function in the plane representation~41!
features the single-planeT matrix of Eq. ~28!. In Fig. 4~a!,
spontaneous-emission rates as a function of position are
ted for Deff50.46a. For both orientations of the dipole, fa
away from the plane the rate approaches the free-sp
value. Close to the plane,Gx is larger thanG0, but it consists
of a rate into propagating modes that is less thanG0, and a
guided-mode rate. Close to the plane,Gz is larger thanG0,
but the maximal values of~the purely radiative! Gz occur
somewhat away from the plane.

The contribution of radiative and guideds waves for an
atom withm5mx is the same as for scalar waves with ‘‘sc
lar dipole moment’’m, but since the total decay rateG0 for
vector waves is larger than for scalar waves, the rela
contributions of s waves to G/G0 are smaller for vector
waves~by a factor 3/4).

In Fig. 4~b!, the same rates are plotted, this time for
plane withDeff510a that reflects light almost ideally: nea
the plane,Gz is almost twiceG0. The maximum values ofGz
still occur away from the plane, although this has beco
invisible in Fig. 4~b!. The propagating-mode part ofGx has
decreased and is practically zero on the plane. The pa
emission rate into the guided mode has a much larger~but
finite, not shown! amplitude near the plane. The other prom
nent difference in the two figures is that the ‘‘spike’’ in th
emission rates due to the guided modes has become m
narrower. Indeed, from Eqs.~39!–~41!, it follows that the
guided-mode rate decays exponentially away from the pl
like exp(22k1

(1)uzu). It follows from the dispersion relation fo
k1

(1) that was obtained in Sec. IV B, that an increase ina/l
or in Deff will give narrower spikes.

In the limit that the atomic positionz becomes equal to
the plane positionza50, the spontaneous-emission rates c
be calculated analytically for both dipole orientations. Fo
dipole perpendicular to the planes,

FIG. 4. Spontaneous-emission rates of dipoles near a single
tially transmitting plane scatterer, relative toG0. The wavelength is
chosen such thata/l50.5. Solid lines correspond to tota
spontaneous-emission ratesGx for dipoles parallel to the plane, dot
ted lines are radiative contributions toGx , and the dashed lines
denoteGz . In ~a!, the effective thicknessDeff of the plane equals
0.46a and in ~b! Deff510a.
6-12
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Gz~za ,V!5G0S 21
3

2j2D 2
3

2
G0S 11

1

j2D arctan~j!

j
,

~49!

where the dimensionless parameterj is defined aspDeff /l.
Similarly, for a dipole parallel to the plane, the three part
contributions to the decay rate can also be expressed in t
of the parameterj alone:

Gx
sr~za ,V!5

3

4
G0@12jarctan~1/j!#, ~50a!

Gx
pr~za ,V!5

3

4j2
G0F12

arctan~j!

j G , ~50b!

Gx
sg~za ,V!5

3pj

4
G0 . ~50c!

In Fig. 5 the relative rates are plotted as a function ofj. The
results can be checked in two limiting cases: ifDeff50 there
is no plane and then indeed bothGz andGx are equal to the
free-space valueG0. The other limit is that of a perfect mir
ror, whenDeff ~and consequentlyj) is sent to infinity. This
limit is not visible in the figure, but the limiting values ar
Gz /G052 and Gx /G050. These values indeed agree wi
the well-known emission rates for atoms near perfect mirr
@21–23#. Emission rates into guided modes vanish in t
perfect-mirror limit; atz5za this is only the case by sendin
Deff to infinity before puttingz equal toza50. This com-
pletes the discussion of emission rates near a single pla

Now consider emission rates inside and near a crystal
numberN of plane scatterers. Results will be presented
N510. In Figs. 6~a!–6~d!, orientation-dependen
spontaneous-emission rates are plotted for several freq
cies. For clarity in the pictures, the positions of the planes
a,2a, . . . ,10a are not shown as vertical lines this time. Th
most striking difference betweenGx and Gz is that Gx be-
comes very spiky near the planes, because only paralle

FIG. 5. Spontaneous-emission rates of dipoles at the positio
the single-plane scatterer, as a function of the dimensionless pa
eterj5pDeff /l. The rateGx ~solid line! is the sum of a rate into
radiative ~dashed line! and into guided modes~dotted line!. The
purely radiative-mode rateGz is the dash-dotted line.
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poles can couple to thes-polarized guided modes~and be-
causep-polarized guided modes are absent in our model!.

As the frequency increases when going from Fig. 6~a! to
Fig. 6~d!, Gx becomes more spiky, because the partial em
sion rate into the guided modes~the difference between th
solid and the dotted lines in Fig. 6! becomes more concen
trated near the planes. The term ‘‘concentration’’ is approp
ate here, because the maximum amplitudes near the pl
are higher for narrower spikes. The same effect was obse
for the single plane in Figs. 4~a,b!, where the frequency is
kept constant andDeff is increased instead.

The purely radiative-mode rateGz on average increase
due to the presence of the planes, whereas the radiative
of Gx on average decreases. The same behavior occurs n
single plane in Fig. 4 and for a perfect mirror.

Figure 1 showed that the optical modes ofp-polarized
light have discontinuities at the plane positions. There
also discontinuities in the spontaneous-emission rates~not
for a single plane, for symmetry reasons!, but these are too
small to be visible in Fig. 6. It can be understood that th
are small from the fact that the discontinuities per mode
averaged in the emission rate.

The dotted lines in Fig. 6 are the radiative parts ofGx .
These are similar to the radiative-mode rates for scalar wa
@5#, but not identical, since inGx not only s-polarized but
alsop-polarized light contributes, according to Eq.~47b!. In
particular, far away from the planes, the emission rate
dipoles parallel to the planes consists of 75%s-polarized and
25% p-polarized light.@To be sure, light emitted by perpen
dicular dipoles is 100%p polarized for all layered dielec
trics, see Eq.~47a!.#

For ‘‘large enough’’ photonic crystals, one expects inn
unit cells to have optical properties similar to unit cells in t
infinite crystal. Are the ten-plane crystals large enough? T
depends on the properties of a single plane. In two extre
cases, the crystal size does not matter. When the individ

of
m-

FIG. 6. Spontaneous-emission ratesGx ~solid line! and Gz

~dashed! near a ten-plane crystal. For all planes,Deff50.46a. The
dotted line is the radiative part ofGx . The parts~a!–~d! correspond
to four frequencies:~a! a/l50.2, ~b! a/l50.4, ~c! a/l50.5, and
~d! a/l50.6.
6-13
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WUBS, SUTTORP, AND LAGENDIJK PHYSICAL REVIEW E69, 016616 ~2004!
planes do not reflect any light in any direction (Deff /a
50), or when they reflect all light (Deff /a5`), one finds
the same emission rates in finite and in infinite crystals,
cause forDeff /a50 we have the free-space case and
Deff /a5` all unit cells are optically disconnected. Only
intermediate cases (0,Deff /a,`) can finite photonic crys-
tals have an appreciableandunit-cell dependent influence o
spontaneous-emission rates.

In the intermediate cases~we assumedDeff /a50.46), the
single-plane reflection also depends on the frequency of
light. The planes reflect light better at higher frequenci
because material dispersion was neglected. It appears th
the lowest frequency considered in Fig. 6,a/l50.2 in ~a!,
the emission rates in inner unit cells already are influen
considerably by the crystal. The rates vary in neighbor
inner unit cells, which indicates that the rates have not
converged to the infinite-crystal values. For higher frequ
cies, saya/l50.6, individual planes reflect light much be
ter. In the corresponding Fig. 6~d!, all inner unit cells look
alike and emission rates have converged.

Now consider a parallel dipole at a fixed position, ve
close to a plane in an inner unit cell. From Fig. 6, one c
also appreciate how the guided modes will influence
~frequency-dependent! emission rate of a dipole very close
a plane. For frequenciesa/l50.4 and higher, Figs. 6~b!–
6~d! show that emission into propagating modes is negligi
compared to emission into guided modes. The dipole f
inside the guided-mode spike near the plane. As the
quency increases, the maximum amplitude of the spike
creases. With the dipole still well inside the spike, the em
sion rate of the dipole will increase as well. When increas
the frequency further, the spike becomes so narrow that
dipole ends up in one of the wings of the spike, until t
dipole finds itself completely outside it. This will cause th
emission rates into guided modes to drop at higher frequ
cies. The combined effect is a peak in the frequen
dependent emission rates. Indeed, in Ref.@19# the dipole
emission rate~or more precisely, itss-wave component! for
infinite crystals as a function of frequency shows a p
nounced peak for dipole positionsz near a plane~see Fig. 3
in Ref. @19#!. We can unambiguously attribute this peak
emission into the guided modes.

We can also understand how an emission peak will
pend onDeff and on the distance to the plane. We have s
that spikes are narrower, with higher amplitudes, for lar
Deff and for higher frequencies. When assuming largerDeff ,
a dipole at fixed distance will feel a guided-mode enhan
emission rate for lower frequencies. However, the dipole w
also at lower frequencies begin to fall outside the range
the spike. This explains why for fixed dipole position a
increasedDeff , the emission peak has a larger amplitude a
attains its maximum at a lower frequency, precisely as s
in Fig. 3 in Ref.@19#. Similar reasoning suggests that for
parallel dipole a bit further away from a plane but still clo
to it ~while keepingDeff fixed!, an emission peak will occu
at lower frequencies, with lower amplitude.

What can be appreciated best in Fig. 6~a! is that for par-
allel dipoles the total emission rate converges faster than
radiative and guided-mode partial rates separately. This
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be related to a kind of mode competition betweens-polarized
propagating and guided modes that we also found for sc
waves@5#. On the other hand, for perpendicular dipoles
emission is into radiative modes, so mode competition
absent there and convergence sets in earlier.

For scalar waves the ten-plane structure could act as
omnidirectional mirror, whereas in Sec. IV A it was foun
that it is not an omnidirectional mirror for vector wave
Correspondingly, the radiative-mode LDOS for scalar wav
at a/l50.5 dropped down to~almost! zero inside the ten-
plane omnidirectional mirror, whereas the emission rates
Fig. 6~c! show that the radiative LDOS for vector wave
stays nonzero inside the crystal. In the inner unit cells,
poles parallel to the planes emit predominantly guided lig
The small amount of light that leaves the structure is stron
p polarized. This is the case arounda/l50.5 only, where
s-polarized light is omnidirectionally reflected. Such strong
polarized emission is not a peculiarity of the plane-scatte
model, because it will also occur for a real Bragg mirr
whenever light of only one of the two polarization directio
is omnidirectionally reflected. In the other plots in Fig. 6 f
higher and lower frequencies, the radiative-mode parts ofGx
are the sums of emission rates into both polarization dir
tions.

VI. CONCLUSIONS, DISCUSSION, AND OUTLOOK

A theory was set up for the multiple scattering of vect
waves by parallel planes, thereby generalizing previous w
for scalar waves to the more interesting but also more co
plicated case of light waves. Unlike for scalar waves,
Green function had to be regularized. This was accomplis
by introducing a high-momentum cutoff. An effective sca
tering theory emerged with a nonzeroT matrix that no longer
depends on the cutoff. TheT matrix and Green-function for-
malism turned out to be very convenient for the calculat
of propagating and guided modes, as well as spontane
emission rates, of finite photonic crystals of plane scatter

A nonabsorbing plane scatterer satisfies a separate op
theorem for s- and p-polarized light. The radiative and
guided modes ofs-polarized light could be mapped ont
modes for scalar waves. Thes-polarized light has continuou
modes, whereasp-polarized modes have discontinuities
the plane positions.

Throughout the paper, we have stressed the similari
and differences of optical properties of a plane scatterer
crystal of plane scatterers as compared to the correspon
dielectric slab structures. It turns out thatp-polarized waves
differ more in the two cases thans-polarized waves. First
because propagatingp-polarized modes are different in th
two cases because the Brewster angle is 90° for plane s
terers. Second,p-polarized guided modes in finite slab stru
tures have no analogs for plane scatterers. This was
found in Ref.@15# for the single plane and in Refs.@15,20#
for the infinite crystal.

Unlike for scalar waves, equidistant and identical pla
scatterers cannot be an omnidirectional mirror for all vec
waves. Such omnidirectional mirrors consisting of dielect
layers do exist. For layered media, at least three refrac
6-14
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SPONTANEOUS-EMISSION RATES IN FINITE . . . PHYSICAL REVIEW E 69, 016616 ~2004!
indices are required in order to prevent complete transm
sion of p-polarized light in the Brewster-angle directio
@3,4,43#.

Omnidirectional reflection is a property of a dielectric f
external light sources. In this paper, omnidirectional refl
tion could be related to the emission properties of atom
light sources from within the finite crystals. The graphs
emission rates~Fig. 6! show that the emission by dipole
oriented parallel to the planes is affected much more stron
by the planes than emission by perpendicular dipoles. Th
a characteristic of the plane-scatterer model, because th
sence ofp-polarized guided modes is responsible for mu
of the difference. In the frequency interval wheres-polarized
light is omnidirectionally reflected, all light that exits th
crystal after a spontaneous-emission process will bep polar-
ized, irrespective of the orientation of the emitters. Still, t
major fraction of the light will be emitted into guided mode
and stay inside the crystal.

For low frequencies, the single-plane reflectivity is low
emission rates are less affected by the crystal, and finite-
effects are appreciable also in the inner unit cells of the t
plane crystal. For higher frequencies, planes reflect light
ter and emission rates are more strongly modified. In
inner unit cells, the emission rates converge faster to
values of the unit cell of an infinite crystal. If the infinit
crystal has larger variations in the emission rates inside a
cell, then a smaller finite crystal is needed to converge to
result.

We argued that the guided modes will give rise to a pe
in the frequency-dependent emission rate of a parallel dip
close to a plane. We also reasoned that the peak will sh
and shift to lower frequencies when either the effect
thickness or the distance to the plane is increased. Indeed
occurrence of a peak and its dependence on the effec
thickness agree with numerical calculations on infinite cr
tals in Ref. @19#; some more numerical work is needed
corroborate our prediction of the distance dependence.

What other purposes can plane scatterers serve in th
ture? The finite photonic crystals that can be made with th
have one-dimensional periodicity only, yet light propagati
in all three dimensions for all polarization directions is pro
erly taken into account. The number of planes can be cho
at will, and further advantages are that all optical modes
the complete Green tensor can be determined.

Our calculations can be extended to situations where
all planes are identical; or one could allow light absorpti
or gain in the planes by giving the effective thickness a co
plex value; the number of planes per unit cell could also
increased to more than one. Such calculations are possib
our formalism because the results~34! and ~35! for the T
matrix were generalized in Eq.~A6! of the Appendix to
planes chosen at arbitrary positions, each with a differenT
matrix Ta(ki ,v), in other words with a different effective
thickness. The model can therefore also be used to study
effects of disorder in the positions or in the optical propert
of the planes on the spontaneous-emission rates of embe
atoms.

It would also be interesting to study models of finite ph
tonic crystals built up of nonparallel planes. This can
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done, but numerically the model would become more
volved, not so much because the planes have an overla
measure zero, but rather because the plane representa
for nonparallel planes will be different. Numerical calcul
tions for nonparallel planes require the discretization of
dividual planes.

Apart from extending it, one can extract other interesti
observables from the model. For example, the knowledge
the complete Green function makes it possible to calcu
both far-field and near-field spectra of atoms embedded
the finite crystal. It would be interesting to study spectra n
frequencies where the corresponding infinite crystal gi
rise to a Van Hove singularity in the emission rates@20#.
Crystals of plane scatterers can serve as a model env
ment to study the modification of several quantum opti
processes when atoms are embedded in photonic crys
Transient effects in the spontaneous-emission rates are
one example, thereby generalizing work done on a o
dimensional cavity formed by two planes@44#. Calculations
are underway that show photonic-crystal-induced modifi
tions of cooperative atomic processes.
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APPENDIX: DERIVATION OF N PLANE T MATRIX

The goal of this appendix is to derive the expressions~34!
and ~35! for the N-plane T matrix T(N), by summing the
infinite series in Eq.~12!, where theTa are theT matrices of
single planes:

Ta~v!5
1

~2p!2E d2kiuki ,za&Ta~ki ,v!^za ,kiu. ~A1!

Ta(ki ,v) are 333 tensors, defined in Eq.~28!. First allow
all planes to have differentTa(ki ,v); furthermore, allow the
parallel planes to have arbitrary~but all different! positions
za .

The first-order term in the expansion~12! is simply the
sum ofTa of Eq. ~A1!; the second-order term has the form

1

~2p!2E dki (
a,b51

N

uki ,za&Ta~ki ;v!•@D~ki ,v!#ab^ki ,zbu,

~A2!

where the dot denotes the inner product of 333 tensors.
Furthermore, the property ^ki ,zuG0(v)uki8 ,z8&
5(2p)2d2(ki2ki8)G0(ki ,z,z8,v) of the free-space Gree
function was used. The matrix elementsDab of the matrixD
are 333 tensors which are defined as

@D~ki ,v!#ab[~12dab!G0~ki ,za ,zb ,v!•Tb~ki ,v!.
~A3!
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The third-order term of the expansion~12! is as Eq.~A2!,
with Dab replaced byDab

2 5(g51
N Dag•Dgb , that is, the

square of theN3N matrix D. Similarly, the fourth-order
term features the cube ofD, and so on. By summing al
orders, we have

T(N)~v!5
1

~2p!2E d2ki (
a,b51

N

uki ,za&Tab
(N)~ki ,v!^ki ,zbu,

~A4!

where theN-planeT matrix Tab
(N)(ki ,v) is given by the series

Tab
(N)~ki ,v!5Ta•@ I^ IN1D1D21D31•••#ab

5Ta•@ I^ IN2D#ab
21 . ~A5!

Here, IN is the N3N unit matrix and, as before,I is the 3
33 unit tensor, so that@ I^ IN#ab5dabI. Now in the plane
representation, the Green tensor has the form as derive
Sec. III A, and the single-planeT matricesTa(ki ,v) have
the simple form as defined in Eq.~28!, with only Ta

ss andTa
vv
ry

po

tt.

,

A

.

01661
in

nonzero. It follows thatDab , Dab
2 , and all higher powers of

D have only three nonzero spatial components, namely,
ss, vv, and the zv components. As a consequenc
Tab

(N)(ki ,v) has only two nonzero spatial components for
plane indicesa andb, namely, thess andvv component:

Tab
(N)~ki ,v!5S Ta

ss@ IN2Dss#ab
21 0 0

0 Ta
vv@ IN2Dvv#ab

21 0

0 0 0
D .

~A6!

This generalizes the result of Eq.~28! for the single-planeT
matricesTa , where the same two components were found
be nonzero. The generalization is from one plane toN paral-
lel planes placed at arbitrary positions, each plane poss
with a different effective thickness. In the special case c
sidered in the main text that all planes are identical, in ot
words if allTa(ki ,v) are equal, then Eq.~A6! simplifies into
Eq. ~35!.
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