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Spontaneous-emission rates in finite photonic crystals of plane scatterers
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The concept of a plane scatterer that was developed earlier for scalar waves is generalized so that polariza-
tion of light is included. Starting from a Lippmann-Schwinger formalism for vector waves, we show that the
Green function has to be regularized befdrenatrices can be defined in a consistent way. After the regular-
ization, optical modes and Green functions are determined exactly for finite structures built up of an arbitrary
number of parallel planes, at arbitrary positions, and where each plane can have different optical properties.
The model is applied to the special case of finite crystals consisting of regularly spaced identical planes, where
analytical methods can be taken further and only light numerical tasks remain. The formalism is used to
calculate position- and orientation-dependent spontaneous-emission rates inside and near the finite photonic
crystals. The results show that emission rates and reflection properties can differ strongly for scalar and for
vector waves. The finite size of the crystal influences the emission rates. For parallel dipoles close to a plane,
emission into guided modes gives rise to a peak in the frequency-dependent emission rate.
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[. INTRODUCTION infinite three-dimensional photonic crystal, emission rates
vanish everywhere in the inhomogeneous structure. In prac-

Photonic crystals are a well-studied subject nowadaystice, such a uniform suppression of emission rates has not yet
both theoretically and experimentaljl]. Of fundamental been observed for visible light: evidence of crystals exhibit-
importance is the predictiofi2] that in three-dimensional ing a full photonic band gap in the visible light has not been
photonic crystals that meet a tough combination of requirereported to date. Even when in the future such crystals will
ments, light propagation will be completely inhibited in all exist, position-dependent emission rates will occur at the
directions and a photonic band gap will show up for certainedges of the crystals. In general, spontaneous-emission rates
frequencies of light. It is important for technology that pho- of inhomogeneous dielectrics with a high refractive-index
tonic crystals can be created that guide light with low lossegontrast, including photonic crystals, are strongly position
and bend light on a scale of an optical wavelength. The latteand orientation dependent. Calculated spontaneous-emission
properties do not require a band gap in all three dimensionsates in this paper will prove this point. Also, finite-size ef-

A photonic-band-gap crystal would reflect light for all fects will show up in our calculations. The model studied
angles of incidence, when the frequency of the light lieshere is a finite photonic crystal consisting of a finite number
within the gap. However, lower-dimensional photonic crys-of parallel and infinitely thin planes. More about our model
tals such as Bragg mirrors can also be omnidirectional mirwill be said later in this section.

rors, without having a band gdB-5]. Thus, external light In many experiments, dipole orientations are hard to con-
sources can only give an indication that there is a band gapol. When averaged over dipole orientations, spontaneous-
or a proof that there is no gap. emission rates are proportional to a quantity called the “local

Internal light sources such as excited atoms do a better jobptical density of states{LDOS) [7,8]. The concept of a
in probing a band gap, because only a gap would completellpcal density of states was borrowed from solid-state physics.
inhibit spontaneous emission by internal souf@sFor the  The local optical density of states was first named the “local
same reason, a photonic-band-gap crystal would be a wholadiative density of stateq"7], which is the same quantity.
new playground in quantum optics, both when one is inter- Interestingly, the calculation of position-dependent
ested in spontaneous emission in itself, and in processepontaneous-emission rates also has a bearing on the inter-
which normally are obscured or made less efficient becausgretation of measurements performed with a near-field scan-
of spontaneous emission. Not only emission rates would baing optical microscope. In these measurements, a sample is
strongly modified inside a band-gap crystal, but also resonarifluminated through the tip of the microscope, and scattered
dipole-dipole interactions, for example, as they are mediatetight is recorded. In a simple model, the disturbance of the
by the electromagnetic fiel]. The focus of this paper is on optical field by bringing the tip of the microscope to the
spontaneous-emission rates of visible light. sample is assumed to be weak, and the tip is modeled as a
For atomic transition frequencies in the band gap of ardipole with a certain strength and orientation. Then, if the
light scattered in all directions was recorded, the measured
signal would be proportional to the local spontaneous-
*Electronic address: c.m.wubs@tn.utwente.nl; URL: http://emission rate at the position of the tip in the absence of the
tnweb.tn.utwente.nl/cops tip [9].
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After the above general considerations, we now turn tcsis. Finite photonic crystals do not have this advantage and
the topic of how spontaneous-emission rates inside photonithe analysis of the optical properties is usually more difficult.
crystals are actually being calculated. The existence of &osition-dependent spontaneous-emission rates remain to be
band gap in an infinite photonic crystal can be inferred fromexplored in model photonic crystals consisting of a finite
a band structure calculation, which for a three-dimensionahumber of plane scatterers, where light propagation in all
photonic crystals is an art in itse(ee the recent review three dimensions is taken into account, for both polarization
[10]). Quite another and more difficult matter is it to calcu- directions.
late emission rates inside infinite crystald,12. Emission It has been known for a long time that spontaneous-
rates inside or nedmite photonic crystals are even harder to emission rates of atoms change when positioned at distances
calculate. Other interesting quantities would be near-field oof the order of the wavelength of light away from a mirror
far-field spectra of internal sources, or dipole-dipole interac{21—-23. A recent surprise was the measurement and analysis
tions and superradiance effects of atoms embedded in a finitAat even a distant mirrg®25 cm away can change emission
three-dimensional photonic crystal, to name a few compleXates when lenses are used and when the atomic positions are
processes in a complex environment. In such cases, results @ntrolled with a subwavelength precisida few nano-
calculations are hard to check and—even if correct—theyneterg [24,25.

might not give much insight. More complicated than emission near a mirror is it to

M Ilsf thereforel v?ry uﬁ‘erI to studylcomple>|< proces,seshirbalculate emission rates of atoms in or near one-dimensional
simplified models for photonic crystals. Widely used is t ephotonic crystals. A multipurpose formalism for calculating

fs(;)r-cﬂlcign?gisrl-gtrzl;ﬂge\?vil(e):]ealithogestsLSrgtergﬁlﬁaTt?%elre q optical modes in layered dielectrif26] was used in Ref4]
P Y ' H) calculate emission rates inside finite periodic layered
edge of the stop bands of the crystal occur at the same band:- . L . )
Structures, especially inside structures that reflect light in-

edge frequency for all three-dimensional propagation direc=" " . . R
g q y propag oming from all directions, the so-called “omnidirectional

tions, and similarly for the blue band edge. Such a modef© " 13
will describe qualitatively correct the processes well insideM!""Ors [ ] ) . .
Interestingly, light transmission through finite one-

the band gap, while overestimating effects of the photonic ; : ,
crystal at the edges of the gap. The isotropic model als@imensional phqtonlc crystals can be found exactly in .terms
neglects all position and orientation dependence of emissiofif the transmission through a unit cell, the numbeof unit
rates outside the band gap. Inspired by the model calcul&ells, and in terms of the Bloch wave vector of the corre-
tions, more realistic numerical calculations have recently apsponding infinite-crystal structure. In R¢27], this is shown
peared that indeed show the weaknesses of the isotropfer a simple unit cell containing two layers, but it was also
model[12]. proven for general unit cel[28]. This remarkable result was

In this paper another simple model is proposed, one whicheviewed in Ref[29], where its importance is stressed not
takes into account the strong spatial and orientational depemnly in optics but also in acoustics, quantum mechanics, and
dence of optical properties and the finite size of the crystalsother branches of physics. In tAematrix formalism of this
On the other hand, it gives up the existence of a full bandpaper(which differs from the usual transfer-matrix method
gap, as only variations of the refractive index in one dimenfor layered dielectrics we find similar analytical results,
sion are considered. Dielectric slabs are modeled as infinitelglso involving the Bloch wave vector. Such attractive ana-
thin planes, which will be calledlane scatterersA multiple-  lytical results are not available for more complex dielectrics
scattering formalism is set up in which optical modes and thesuch as finite two{30,31 or three-dimensional photonic
Green function(a tensor, reallycan be calculated exactly for crystals[32], so that in those cases the use of efficient nu-
crystals consisting of an arbitrary number of plane scatterersnerical techniques is essential.
The present model is a generalization of previous work that The advantage of our plane-scatterer model is that modes
treated scalar waves on[$]. The inclusion of polarization and Green functiongand therefore emission rajesan be
of light will turn out not to be straightforward. calculated exactly in a Lippmann-Schwinger formalism, for

Infinitely thin planes were used as model systems in phoevery finite-crystal size, and that light propagation in all di-
tonics before, for example, in RgfL4] where light propaga- rections is taken into account. Lippmann-Schwinger formal-
tion was considered in one dimension only and for an infiniteisms are more commonly us¢a3], but when the finite vol-
crystal. The model was generalized in Ref5], where infi-  umes of dielectric scatterers are fully taken into account,
nite photonic crystals were built of infinitely thin planes and numerical discretization of the dielectric is required and the
their band structure was determined for waves propagating imodel stops being simple1,34]. To be sure, the simplicity
three dimensions. In Refl6], both infinite and finite crys- of our model entails that in some aspects it becomes less
tals of planes were considered and their transmission anekalistic, as will be stressed where appropriate.
reflection properties were studied with the use of transfer- In Sec. Il, multiple scattering of light is introduced and
matrix methods. The infinite crystal was again considered ircentral equations are derived in representation-independent
Refs. [17-20 and named the “Dirac-comb superlattice.” notation. In Sec. Il the free-space Green tensor is regular-
Frequency-dependent emission rates were determined fared and aT matrix of a plane scatterer for light waves is
several positions in the unit cell and both TE,19 and TM  derived. Section IV discusses all optical modpsopagating
waves[18,20 were considered. The periodicity of infinite and guided modes, including polarizatichat exist in crys-
crystals gives that Bloch’s theorem can be used in the analytals of plane scatterers. Position- and orientation-dependent

016616-2



SPONTANEOUS-EMISSION RATES IN FINIE . . . PHYSICAL REVIEW E 69, 016616 (2004

spontaneous-emission rates are calculated in Sec. V. Conclu- E(w)=Ey(w)+ Gy(w) - V(w)-E(w) (6a)

sions can be found in Sec. VI.
=Eg(w)+Gp(w) - V(w)-Ep(w)
Il. MULTIPLE-SCATTERING THEORY FOR VECTOR
T S AR g R FORVECTO +Go()-V(0) - Go()-V(w)-Eg(w)+- - (6D

Some important equations of multiple-scattering theory —Eo(w)+Go(w)- T(w)-Eg(w). (60)
[33] will be presented, mostly in representation-independent
notation, for light in arbitrary inhomogeneous dielectrics. In

later sections a particular class of dielectrics will be studiec%ne can check that indeed the fididw) that satisfies Eq.

. S . a) is also a solution of Eq4). The solution of Eq(6a) can
and a swtgble representation is chosen, but then the mvc_)Iv e found iteratively in higher and higher orders of the optical
notation might obscure the general structure of the equations.

: - ; potentialV, as given by the multiple-scattering series in Eq.
Thelwave equation for the electric fieliy(r, w) in free (6b); the (dyadig T matrix in Eq.(6¢) by definition is the
space 1s formal sum of the infinite summation in E@6b). The T
) matrix is a 3 3 tensor. By combining Eq$6b) and(6c), the
(0/C)Eo(r,0) = VXV XEy(r,0) =0 (18 formal solution for theT matrix is

{(w/c)?l- =V XV X}Eq(r,w)=0. (1b) T(w)=V(w) [1&1-Gy(w)-V(w)] L. (7)

The symboll denotes the unit tensor in three-dimensionalThe scattering problem is solved exactly once Theatrix is
space. The solutions of E¢la) are plane waves with wave known.

vector k and polarization direction normal tk. With the There may exist optical modes that are bound to the scat-
free-space wave equatiaa), a Green tensofor dyadic terer. Such bound modes correspond to solutions of the LS
Green functioh is associated that satisfies equation(6a) in the absence of an incident field; with Eg)

we can rewrite this homogeneous equation as

{(0lC)?l- =V XV X}Gy(r,r',w)=83(r—r")l. (2

T Yw) - V(w) E(w)=0. 8
Let L(r,w) be the quantity between curly brackets in Egs. , Lo )
(1b) and (2). Both equations can be considered as the reallt follows that bound solutions o_f the electric field will cor-
space representations of an abstract tensor opetdio) respond to the poles of th‘é_ matrix. Actually, Eq.(6¢) also
operating on the vector fiely(w) and on the Green func- SNOws that a nonzero solution f(w) can only occur when
tion Gy(w), respectively, T(w) has a polg. Thé’_matrlx not only solv_es the_scatterlr_lg
problem for incident fields but also contains all information
about bound modes.

In the presence of the dielectric the Green function also

changes, fronG, to G. The latter satisfies

L(w) Eg(0)=0, L(w)-Go(w)=1a. 3)

The identity operator in real space is denoted land it has
the property(r|1|r'y=8%(r—r"); confusion with the unit [L(w)-V(0)]-Glw)=1aI 9)
tensorl should not arisep denotes the tensor product. ’

In the presence of an inhomogeneous dispersive Iineaf:
dielectric, the wave equation for the electric field is modified
into

he solution for the Green function analogous to Ej.for
the electric field is the three-dimensional Dyson-Schwinger
equation

Hw)-Bl@)=V(w)-E(w), @ G(@)=Gol®)+Gol®)-V(®)-G(w) (108

where the frequency-dependent optical potentig defined -G e T(w)-G 10b
in terms of the dielectric functioa(r,») as o( @)+ Go() - T()- Go(®). (00

, ) , It can be verified that a solution of E¢L03 also is a solu-
(riV(o)[r")=—[e(r,0)=1](w/c)*15(r=1").  (5)  tion of Eq.(9). The problem of how to find such a solution is
solved once th& matrix (7) is determined, because an itera-
The §-function on the right-hand side defines the potential agion of Eq. (109 analogous to the series expansi6i) for
a local quantity(which theT matrix, to be defined shortly, is the electric field shows that the Green function can also be
not). In other words, thiss function appears for any poten- expressed in terms of thEmatrix, as given by Eq(10b).
tial. Equation(10) also holds when the total potenti{ w) is
The electric fieldEy(w) is modified intoE(w), and the a sum of single-scatterer potentidls(w). By iterating one
two fields are related through the Lippmann-Schwin@e)  finds that the totall matrix for an arbitrary numbeN of
equation these scatterers is
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N direction;\A/k is the unit vector in the direction of the projec-

T(N):gl Va+a2ﬂ VB'GO'VaJraEBy Vy-Go- Vg Go- Vo tion of the wave vectok on the plane, so that the wave
vectork has a componerk; in the Vi direction and its full
e (1D representation is (B},k,); the s,-polarization direction is
orthogonal to the optical plane that is spanned by the other

Often it is more convenient to make an equivalent expansiOI.E\N0 basis vectors. Then the operatdiw) has the form

in terms of the single-scatter@rmatrices|33]:

N <k|| ,Z||_(w)|kH/ ,Z’>= (277)252(1(“— kH/)5(Z—Z')L(kH Z,0),
(N) — .Gn-
T ‘,21 T“+aﬁ%a) TpGo Ta where the operatdr (k| ,z,») has the matrix representation
Ic)?—kZ+ g2 0 0
+ > TGy TGy Tt . (12) (wle)"—kj+d;
a,B(#a), y(#B) 0 (wlc)?+ a§ —ikya, . (15
The frequency dependence was suppressed in (Etjsand 0 —ikjd,  (w/c)’—kf

(12). The form of Eq.(12) of the totalT matrix will be used o )
later in this paper, for model systems where the infinite sumJ e Green foncpon in t?ez same representa,\tlon becomes
mation can be performed explicitly. (kj.2|Go(w)[Kj ,2") = (2m)*&°(kj—k[) Go(K| ,2,2', @), and

the transformed Eq13) is a system of differential equations:

Ill. PLANE SCATTERERS FOR VECTOR WAVES G(s)s GSU ng 10 0
The general results of multiple-scattering theory that were vs  Aov vz | oo,

presented in Sec. Il will now be applied to dielectrics that Lkj.zw)| Go” Go Go | =d(z=2)| 0 1 0O
can be described as a collection of parallel planes. A suitable Ge® Gy Gy 0 01
representation is chosen, and specific forms of the potential (16)
V, the free-space Green functi@y, and the incoming elec-
tric field Eq are determined. With thig, matrices for a single
plane and for an arbitrary number of planes are derived.

GH% are the components of5, and their arguments
(kj,z,2',w) were dropped for brevity. By choosing the plane
representation, the matrix elements&f only depend on the
magnitude and not on the orientationigf. All components
involving ans label are zero, except thes componentGg®

A solution for the free-space dyadic Green function cansatisfies the same differential equation as the Green function
be found in three-dimensional Fourier space. By translationaj, of the Helmholtz equation for scalar waves, so that for
invariance, (k|Go(w)|k’) must be equal to (2)°6°(k  »>0 we have
—k")Gy(k,w). The Green functiorisy(k,w) satisfies

A. Dyadic Green function in plane representation

eikz|z—z’\

{[(w/c)®— K21+ k2kK} - Go(k, w)=1. (13) oK.z, 0)=0go(k} 2.2, 0) = —

(17

Here, k denotes a unit vector in the direction of the wave The variablek, is not independent ok, but rather an ab-
vector k. Equation(13) is a 3x3 matrix equation whose preyiation for[(w/c)z_kﬁm_ The remaining coupled dif-

representation  diagonalizes in the polarization basigerential equations of Eq16) can also be solvetagain for
{k,o1,05} with the longitudinal directionk and two or-  »>0), now thatG$® is known:

thogonal transverse directioﬁqz. The solution of Eq(13) X

° Gy (k) 2,2 )= — (18a
(ky,z,2 )= ,
B o (K| (w/c)zgo
Gl(k,w)=———, GXk,w)=(clw)?, (14
Bkw)= e G ke)=(clw) ) ok,
Go'(kj,z,2" \w)=— 5Gosgriz—2z'),  (18b
wherej denoteso; or o,. All six nondiagonal elements of (wlc)
the Green tensor are zero in this representation. This is the Zv ) vz
retarded Green function once we assume that the frequency Go'(kj,z,2",0)=Gy", (180

 has an infinitesimally small positive imaginary part.

The above Fourier representation is not what we need. It Vs , 1 ) ,
is convenient to work in the “plane representation:” in two- Gokj,z.z ,w)=7[k”go+ 8(z=2")]. (180
dimensional Fourier space in the directions parallel to the (w/c)

planes and in real space in tiedirection perpendicular to  Green functions in the right-hand sides are understood to
the planes. For EheApoIAanzatlonArepresentatmn choose the dfigve the arguments(,z,2', ). The above method of solv-
thonormal basi$s,,vy ,z}. Here,z is the unit vector in the  ing differential equations does not give a value for the
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signum function wherz is equal toz'. The Green-function However, the Green tens@, is not defined when the
component$18) can alternatively be found from an inverse positionsz andz, are identical, because of thefunction in
Fourier transformation the componenG§? [Eq. (18d)]. One could just neglect thé
1 function, as might be correct in other situatidi®s], but it
Go(k|.2.2', :_f dk.Gy(K; K., elky(z=2). will be.argued in Sec. lll C that this procedure \{vould be
olk ©) 27 ) o olKj k@) wrong in our case. Therefore, the Green tend@®) is not

(19 suited for setting up a theory for the scattering of vector
o . . ~waves by infinitely thin planes.
This integration can only be performe_d in a repr(_asentatlon It is known that “regularization” of Green functions is
that does not corotate witk; . The basis of Eq(14) is not  sometimes needed when modeling finite-sized scatterers as
adequate, but again the bas,v,z} suits well. With this mathematical objects with zero volume, in order to have a
Fourier method one finds the value 0 for the signum functiormodel that is relevant for optic§Regularization was not
in Eq. (18 whenz equalsz’: for z=z' the relevant inte- needed for scalar waves scattering off plafds In a regu-

grands in Eq(19) are antisymmetric in the variabl€ . larization procedure, usually a cutoff parameter is introduced
that modifies the behavior of Green functions at distances
B. Regularization of the Green function much smaller than optical wavelengths, and mathematical

problems are thus overcome. In some cases, the regulariza-

The T matrix of a plane scatterer for vector waves can b&jon parameter can be sent to infinity in the final stage, while
found by solving the appropriate Lippmann-Schwinger equajy gther cases the cutoff parameter must be kept finite. For

tion (6). A plane wave incident froma= —c with wave vec-  gyample, for point scatterers the problem of diverging Green
tor k and arbitrary amplitud&, and transverse polarization f,nctions occurs both for scalar and for vector waves. Point
vector oy = (05,0, ,0,) is scattered by a plane @=z,.  gcatterers have been studied extensively and several regular-
Because of the symmetry in the in-plane directions, it is cONi,aiion schemes have been propogeee Ref[36] and ref-
venient to choose the plane representation for the LS equayences therejn

tion. In terms of the Dirac notation, the electric field is @  The same regularization procedure will now be chosen for
“ket;” the plane representation is found by taking the inner plane scatterers as was done before for point scattg38}s

product of Eq(6) for the electric field with the *bra(k;.z|, A high-momentum cutoff is introduced in three-dimensional
and by inserting the unit operator Fourier space. Instead of the free-space Green function
Go(k,w) of Eq.(14), a regularized free-space Green function
f dzkljdz’|k”’ ,z’)(kﬁ Z'| (20) Go(k,w) will be used. The latter is defined in terms of the
(2m)? former as

at the positions of the dots in the representation-independent 5
equation (6). The incident field takes the form éo(k@):(_
Exeo.0(K| .2, @) = Eqoyexp(k,2). The solution of the LS equa- 24 K2
tion corresponding to this incident field i§.,(w). The LS

equation in the mixed representation becomes The cutoff momentum\ is assumed to be much larger than
the magnitudew/c of the optical momentum, so that at op-

Go(k, ). (23

Erolk) 2,0) tical wavelengthsG,=G,. The effect of this cutoff in the
=E o e*? real-space representation is also knds6]. Here its effect
. on the Green function in the plane representation is impor-
F NN Y. ' tant. After an inverse Fourier transformation, again only in
- wa d2'Go(k|2,2",w)- V(Z',0)- Eiolk) 2", ). the z direction, one obtaingagain forw>0)
(21) ~ 2 e*AH|Z*Zl|
A plane is assumed to be infinitely thin and it can be de- Ggs(kH,z,zl,w)zAsz / 2<90+ 2A ) (249
scribed by the optical potenti®l(z, ») = V(w) 8(z—2z,)1. (A (w/C) ”
specific model potential will be chosen in Sec. Il Fhe
integral can be evaluated immediately and we get ~ k§c2~
GSU(kH,Z,Zl,w)Z—ZGSS, (24b)
w

Eka—( kH ,Z,(I)) = an'keikzz

+V(w)GO(kH 2,2, ,0) - Ek(r(k\l Zy ).

~ A%sgn(z—z;) K
(22) Go(k|,2,2y,0)=— SO

A%+ (wlc)? (wlc)?
The usual way to solve this equation would be to put the X[k,g +(i/2e Mlz-nly, (249
position z equal toz, and to solve forE,,(k|,z,,w). The =0 ’

result would then be inserted back into the above equation to _ =02
obtain an expression fdy (k| ,z,). Go'(kj,2,21,0)=Gq", (249
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k||2C2

GE(k|,2,2y,0)= e 9o

A2
A%+ (wlc)?
Af+(wlc)?
+—

7A —
ZAH(w/C)Z ¢ e

. (240

In the right-hand sides, the arguments, ¢,z;,») of the
Green functions were dropped; is short-hand notation for
(A2+ kf)l’z; again, the signum function is zero when its ar-
gument is.

All components of the regularized Green tensor consist of
two parts: an oscillating and a decaying part, as a function of
|z—z;|. The decay occurs at a distance that is a tiny fraction
of an optical wavelength. Fok|z—z,|=1, the regularized

PHYSICAL REVIEW E59, 016616 (2004

Eﬁa(k“ Zy ,w)
Eko(K|:Z4,0)

ﬁa(kH,Za,w)
o G 0 0
=Eo| ov | et V(w)| O Gf’ O
ag, 0 0 ééz

Exo(K| 124, o)
lli()'(k” Ly ,w)
Eio.(k” Ly ,a))

(29

Green function approaches the unregularized one. If onmere'égs stands fO@SS(kH,Za,Za,w), and similarly for the
would take the limitA—co, then all the components in Eq. other components. The off-diagonal elements of the Green

(24) approach the unregularized components of(&§), and
in particular the limit of the last term iG5” gives the

tensor are all zero when the positiaiis equal toz,,, so that
the equation can be solved for every component separately.

function that made the regularization procedure necessary inserting this result into the LS equation for genezal

However, A is kept finite for the moment, so th&3? has a
finite term that grows withA. With this result, the Green-

function regularization is complete and a theory of scattering=

by vector waves from plane scatterers can be set up.

C. T matrix of a plane for vector waves

The regularization entails that the Green function is re-
placed by its regularized version in the LS equati@h). For
z=1z, that equation becomes

one finds

ko'( k|| Wz, w) = Eka,O(kH V2, w)

+é0(kH 2,2y, @) -T_(k” W) Eka’,O(kH Zyh ),
(26)

where theT matrix for scattering from a plane by arbitrarily
polarized light is given by

_ V) 0 0
1-V(w0)G§®
. V(o)
T(kj,w)= 1 V(a) B (27)
0 0 QN
1-V(w)GZ

The scattering of the-polarization component of the light influence light scattering. Incomingpolarized light is char-

can be considered independently from thendz directions,
according to Eqs(26) and(27). It can be verified with Egs.
(24) and (27) that, sinceA>(w/c), the matrix component

Tss for all practical purposes is equal to tiematrix for

scalar waves, and the same holds for the Green tensor corprb

ponent égS: the regularization was not necessary for

spolarized light and fortunately it does not affect the scat-Ed- (26) falls off asA™*
that for optical purposes these terms can be neglected. For

tering properties of-polarized light.

acterized by its amplitudg,, wave vectok, and its polar-
ization state o=p=(k,/K)v,—(kj/k)z. Written out
explicitly,

the incoming field is Eyqo(K|,2,0)
Eo(OK,/k,—kj/k)exp(k,2). For distances far enough
m the plane so that\|z—z,|>1, the termG4“T? in

andG§*T%? as expE-Ajjz—z,)), so

The need for regularization did show up in the descriptionfinite very largeA we arrive at the following effective de-
of scattering ofp-polarized light, and there the cutoff might scription:
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ES(2) 4(z) Gy 0 0 terer can take. The optical theorem for a plane that scatters
scalar waves was found befofB]. Sinces waves map on

E'(z) | =| Eo(2) | +| 0 Gy G scalar waves, the optical theorem for the component of
E%(2) 5(2) 0 G¥ G§ the T matrix can be given immediately:
TS 0 0 E3(z, 1Tk, 0)|?
f( ) Im Tk ,w)=—§—| L . i (30
x| 0O T O o(za) |, (29 z
0 0 0 E&(Z4) The most general matrix satisfying this requirement has the

o form
where the sscomponent of theT matrix is equal to

V(0)[1-V(0)G5® ", and  analogously for the TSS(ky ) = —[F5 2kj ) —i/(2k)] %, (31)
vv-component. The Green functions have arguments

(K,2,24,0). In this effective description—where tema-  where the optical potentidt (k| ,») must be a real-valued
trix is denoted byT rather thanT—the cutoff parameteA function.

does not occur anymore. The cutoff was necessary in order to For reflection and transmission pfpolarized light, only
set up a scattering theory and it shows up in the elements dhe matrix element®? is important. Again, we are interested
the scattering theory such as thenatrix (27) and the regu- in the form that this matrix element can take when optical

larized Green functiori24). It does not show up in the elec- energy is conserved. This is the case whenztieemponent
tric field, and precisely this enables us to arrive at the effecof the Poynting vector is the same before and after the plane.
tive description. Note also that théarge) value of Gg* has  An incoming p-polarized plane wave gives the electric field
become irrelevant. (28). With a Maxwell equation the accompanying magnetic
The effective description that is obtained here after &jeld B can also be found. In Sl units, and in terms of the
regularization is different from a theory where théunction  complex fieldsE andB, the cycle-averaged Poynting vector
in G§* [see Eq(18d)] would simply be remove{B5]. Leav- s equal to REE* (r,t)xB(r,t)]/(2u) [37]. When a har-
ing out thes function in the LS equatiof21) will resultina  monic wave of frequency coming fromz= —« scatters off
nonzeroT#* in contrast with Eq(28). Furthermore, th&  the plane, the Poynting vector is proportional to 1
matrix would have the unwanted effect that the transmitted- (k,c/w)?|T"?|?/4 for z<z, . At the other side of the plane
part of an incoming wave would not be parallel to the incom-one finds|1—ik,(c/w)?T**/2|2. By equating the two, the
ing wave. The conclusion is that a regularization of theoptical theorem for a plane that scatt@epolarized light is
Green function was necessary, even when in the end th@und to be
cutoff could be sent to infinity.

Equation(28) defines a true mode of the electromagnetic —k,
field in the presence of a single plane scatterer, in terms of a IMmT* (k| ,0)= 5 |T””(kH ,w)|2. (32
linearly polarized incoming plane wave with arbitrary angle 2(wlc)

of incidence. This is not the complete set of modes. Other

modes, not corresponding to an incoming wave, will be dis-This differs from the optical theorem fapolarized light.

cussed in Sec. IV B, both for a single plane and for a crystaf\S0; the most general solution of the optical theorem is

of planes. different:
ik, |*
D. Transmission and energy conservation Too (k@)= — F,;l(ku w)— . /ZC)Z ’ 33
®

The transmission of light through the plane can be found
by choosingz>z, in Eq. (28). The transmitted wave can be
expressed in terms of the incoming wave Bg, (k| ,z, o)
=7(K|,®) - Eyg o(K|,Z,0), with the transmission matrix

where the optical potentidt (k| ,w) is real.

E. T matrix for N planes

Tsdkj ) 0 0 Now that the Green function and tAematrix of a single
oKk, @)= 0 Tyo(Kj @) 0[] (29 plane are known, a multiple-scattering theory can be set up.
0 (k@) 1 Assume that there afd plane scatterers, placed at arbitrary
positions. Assume them to be parallel, so thatand
which  has nonzero elements 7j;(kj,@)=[1~ p-polarized light do not m_ix in the scattering_process.
V(0)GY (K| 124 124 )] ! for j=s,. Furthermore, In the general expressiqi2) for the T matrix of a com-

T (K|, @) = G (K| ,Z4 1 2o, @) T (K|, ). Both for purely plex dielectric in terms of its simple parts, Green functions
s-polarized and for purely-polarized light, the transmitted 2are always sandwiched betwe&matrices of scatterers at
electric field is a polarization-dependent scalar times the indifferent positions. For unequal plane positiansand zg,
coming electric-field vector. the value ofGgy(k|,z4,2,,w) is finite and it can be taken to
Energy conservation puts a constraiwalled “optical  be equal to the unregularizésh(k,z4,2,,w), because dif-
theorem”) on the form that thel' matrix of an elastic scat- ferent planes are at optical distances apart. Further regular-
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izations are therefore not required in order to find the k,C2F (K, ©)
N-planeT matrix. C,=cogk,a)— ( p—z) sink,a).  (37b
As shown in the Appendix, higher-order terms in the se- 20
ries (12) correspond to higher-order matrix multiplications of
Nx N matrices. The multiplication property makes that for F. A model for the optical potential
parallel planes, the seri¢2) can be summed exactly. Inthe  The most general matrices(31) and (33) feature as yet
Appendix it is shown how the summation can be done evemunspecified optical potential6s,. These should be real
in the general case where all planes may have different opvhen energy is conserved, but for the rest they can be arbi-
tical properties, and are placed at arbitrary noncoincidingrary functions with the frequency and the in-plane wave
positions. Here we specify that all planes are identical. Thizvector as variables.
gives the central result of this section, tNeplaneT matrix In Ref. [5], plane scatterers were introduced as a simpli-
for scattering by vector waves: fied model for dielectric slabs of finite thicknedsand non-
N dispersive dielectric function(w)=¢. The optical potential
for the plane scatterer in this model is obtained via the lim-
(2m)? f dzkuaﬁzzl [kj.22) TOA (K@) Zal.  iting process of making the thicknedsof the dieleciric slab
(34) smaller and increasing the polarizability- 1), while keep-
ing their product constant and equal to the “effective thick-
Eacha B componentT{2(k, ) is a 3x3 matrix; the only ~Nness” Deg. (The quantity Deg/a is called the “grating

TN (@)=

two nonzero spatial components are strength” in Refs[19,20.) Following the same limiting pro-
cedure as in Ref.[5], we find the optical potential
T =T Iy—WeT*, 5, (358  Fsp(kj,@)=—V(w)=Deg(w/c)? identical for the two po-
larizations. Spatial dispersion and anisotropy would have
TouMN =Ty =W, T3, (350 shown up in the optical potentials akpandk; dependence,

respectively. These two phenomena were neglected already

Here, Iy is the NXN unit matrix. Arguments K, ) were  as early as in the wave equatich).
temporarily dropped for readability. TH¢* matrix elements In general p-polarized light differs frons-polarized light,
(W) up(k|,0) are defined as (46,5 Gl(K|.Z,,25,0), in that the former will have a Brewster angle at which no
for j=s,v. The calculation of™(k,w) boils down to the light is reflected from a dielectric interface{—n,). The
inversion of anN X N matrix for the two transverse polariza- Brewster angledg equals tan(n,/n;). In the limiting pro-
tion directions separately. cedure for going from a finite slab-in-air to an infinitely thin

From now on, assume that ti¢ planes are placed at plane-in-air, the dielectric contraste/1 goes to infinity and
regular distances from each other, with a spacrigetween  consequently the Brewster angle becomes 90° in that limit.
neighbors. The necessary matrix inversions in &%) can  Therefore, in our limiting procedure, a plane scatterer will
then be performed analytically for both polarization direc-not have a Brewster angle at the same angle as the finite
tions. Thes-wave case maps identically on the situation for dielectric slab that one starts out with. In line with this, in
scalar waves, for which the analytical inversion was dis-Ref. [15] a single-plane reflection fgo-polarized light was
cussed at length in Ref5]; for p waves the inversion trick determined that is nonzero for all angles of incidence. The
goes analogous and it will not be presented here. p-polarized propagating modes for a system of plane scatter-

A result from the analytical inversion is th@tmatrix el-  ers will therefore differ substantially from the corresponding
ements and therefore the optical properties of Kiplane  modes in a slab structure. The absence of a Brewster effect
crystal strongly depend on the Bloch wave vectdgék|,w)  was also noticed in Ref18] where the infinite-crystal ver-
andK,(kj,»). For p-polarized light the Bloch wave vector sion of the plane-scatterer model is treated.
is given by arccost,)/a, with Cp=cos(<2a)+CF’,sin(kza);
the constanC") in terms of the single-plan& matrix is IV. OPTICAL MODES AND OMNIDIRECTIONAL

MIRRORS
ik K| T2+ 2(w/c)2IMT ]+ 2k, w/Cc)?ReT??

(36) A. Propagating modes
K2(RETY)?+[2(w/c)?+k,Im Tv?]2

The optical modes are the harmonic solutions of the wave
equation(4). With the solution(34) of the T matrix, the
modes that correspond to a nonzero incoming plane wave
can be given explicitly as

In generalC, is a complex constant. However, if the optical
theorem(32) holds, then the imaginary part @, becomes
identically zero, and the single-plafiematrix will be of the

form (33). Likewise, K is defined as arccogg)/a for a Exo(K|,Z,0)
guantity C that becomes real when the optical theorem, Eq. _
(30), for s-polarized light holdg5]. In those cases, the ex- =Eqo e

pressions folCg , become rather simple,

+ X Go(Ky 12,24 ,0) - TN Ky, 0) - 0y Eoe’*%.
Fs(k, @) R £ Koo

—) sin(k,a), (37a

Cs=cogk,a)— oK
Z

(39)
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FIG. 1. Squares of absolute values of mode functions for
s-polarized(solid lines and p-polarized light(dashed lines as a
function of position. The light is scattered by a crystal of ten plane
with Dg=0.46a, separated by a distan@ Both modes corre-
spond to light incoming from the left wita/\=0.5. Panel(a),
0,,=30°; panel(b), 6;,=60°.

FIG. 2. Reflection off a ten-plane crystal, as a functiorabX,
for s-polarized light (solid lineg and p-polarized light (dashed
ﬁines). Angles of incidence are 0° ia) and 60° in(b). The planes
have effective thicknesP4=0.46a and they are separated by a
distancea. In (a), the graphs fos andp polarization overlap.

ditions: the tangential components of the electric fields must
These propagatingor radiative modes are labeled by the be continuous and the normal components must show a jump
incoming wave vectok and polarizatioro, . The sine of the at a dielectric interface. The electric field ®polarized light
angle of incidencgwith respect to a vector normal to the only has a tangential component, whitgoolarized light con-
planes is equal tok c/w. The amplitudes of the-polarized  sists of both tangential and normal components. This ex-
modes[with o=(1,0,0)] are identical to the corresponding plains the differences in the mode profiles fmndp waves.
amplitudes for scalar waves; thepolarized modeq oy Notice that in our Green-function formalism, boundary con-
=(0k,/k,—k;/k)] have no scalar analogs. ditions are automatically satisfied, whereas in related work

For light with wave vector and frequency such ti@at, based on transfer-matrix methods, boundary conditions must
>1 [see Eq.37)], the Bloch wave vector is purely imagi- be considered explicitly15,16,2Q.
nary for the elastic scatterers that we consider. Similarly, for Reflection as a function of frequency by the ten-plane
Csp<—1, the Bloch wave vector equais plus an imagi- Bragg mirror is plotted in Fig. 2 for both polarization direc-
nary number. In both situations the light will feel a stop tions. The reflectionp|?> equals (|7|?), with |7]? the
band, meaning that it will be 100% reflected when falling on(relative transmitted light intensity. For light incident per-

a semi-infinite system of planes. Otherwise, wherl pendicularly to the planes, both transverse polarization vec-
<Csp<1, the Bloch wave vector is real and light can tors are equivalent and accordingly in FigaR the graphs
propagate inside the crystal. More will be said about thefor s- andp-polarized light overlap. Differences between the
Bloch wave vectors later in this section. two polarizations do appear for non-normal incidence. In

Some plots of mode profiles will now be presented. As-Fig. 2(b) the angle of incidence is 60°. The red edges of the
sume that light comes in from the left. For perpendicularlystop bands fos-polarized light move to slightly higher fre-
incident light, there is no difference betwesmandp polar- quencies and the widths of the stop bands become larger. For
ization. In Fig. 1 the mode profile®r squared absolute val- p-polarized light the red edges of the stop bands shift to the
ues of mode functionsfor s- and p-polarized light inside a blue much faster, and the faster so for larger angles of inci-
ten-plane crystal are compared both for an incoming angle afience.
30° and for 60°. Figure (&) shows that at an angle of 30° For scalar waves, a crystal of plane scatterers can be an
the mode profiles corresponding to both polarizations do noemnidirectional mirrof5], which means that waves experi-
differ much yet. Both modes decay rapidly inside the crystaence a stop band for all angles of incidence. For vector
structure and are reflectg@lmosy completely. The Bloch waves, the crystal will only be an omnidirectional mirror if
wave vectors are complex for both polarizations. Only forthere are frequency intervals in which the crystal is an om-
the s wave the polarization directions of the incoming and nidirectional mirror both fois and p waves.
the reflected wave are equal, so that the amplitude of its As stated earlier, it is the Bloch wave vectdtghat dis-
mode profile at the left side of the crystal is four times thetinguish between light that can propagate inside the crystal
amplitude of the incoming electric field. (realK) and light that feels a stop barf@henK is an imagi-

The situation is different at an incoming angle of 60°, asnary number orr plus an imaginary numbgrin our formal-
shown in Fig. 1b). The mode profile of the-polarized light ism, the Bloch wave vectors are the arccosines of the con-
again rapidly decays inside the crystahd the correspond- stantsCs andC, given in Eq.(37). As is shown in detail in
ing Bloch wave vector again has an imaginary pavhereas Ref. [5], these Bloch wave vectors show up in expressions
the p-polarized light can propagate inside the crystal and idor the N-plane T matrix T"), It must be said that in the
transmitted almost complete(gnd the Bloch wave vector is presentl matrix formalism it is not obvious simply by look-
real). For this frequency and incoming angle, the crystal is ang at the equations that a stop band occurs whenever the
good polarization filter. Bloch wave vector has a nonzero imaginary part. Neverthe-

The mode profiles in Figs.(a,b) of thes-polarized waves less, we conclude from our numerical calculations that the
are continuous wheregspolarized waves are discontinuous relation does exist. To give an example, of the four modes in
at the positions of the planes. This reflects the boundary corthe Figs. 1a,b), only the p-polarized light incoming at 60°
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1 MSUUUURON SUUOTOT, PSR SR SO NUSSO S For vector waves, the local optical density of states
N(r,w) is defined by[7]
—[(2w)/(wc®)]IMTrG(r,r, o), (39

so it is a scalar proportional to the trace over the imaginary
part of the Green tens@(r,r,w). In planar geometries the
latter can best be found as an integral over the Green tensor
in the plane representation:

[ i L 't 't 1
0O 20 40 60 80 G(f'f'w):(ZW)zdeMG(h,Z,Zﬂv)- (40)

Angle

The local density of states can only be nonzero if the imagi-
FIG. 3. Constant€; andC,, as a function of angle of the in- nary part of the integrand i40) is nonzero. A guided mode
coming light, for the parametera/A =0.5 andD;=0.46a. Re-  manifests itself when diagonal elements of this integrand
gions where—1<C=<1 correspond to propagating waves inside G(K|,z,z,0) have nonzero imaginary parts for a certéjn
the crystal. >wl/c. For the crystals of plane scatterers the Green tensor

has a corresponding real Bloch wave vector. It is an interest(-j'rec'[Iy follows from the Dyson-Schwinger equation:

ing fact that the Bloch wave vector, the role of which is Gk ,

obvious in infinite crystals, also plays an important role in (k.22 )

finite periodic structures. This was already noticed before in =Go(K|.2.2', )
the context of transfer-matrix methofa7—-29; here we see

the importance of the Bloch wave vector for finite periodic N

N ’
structures in a-matrix formalism. +a;:1(30(k\| 2,2,,0) TONK| @) Go(K| 25,2, 0).
For light of a frequency corresponding &\ =0.5 and '
planes withD+=0.46a, the s waves are reflected omnidi- (41)

rectionally[5]. In Fig. 3 we plot both constantsg and C, i ,

for this frequency, as a function of angle of incidence. UnlikeAll three diagonal components dbo(k,z,2",») become

for swaves, forp waves there are incident angles larger than@@l quantities fok;>w/c, and indeed there are no guided
the critical angled,=55° for which the values o€, are modes in frezze s;z)ace. On the other _hand_, the off-diagonal
between—1 and 1. Light incident with these large angles elements Gy*=Gg’ become purely imaginary whetk

can propagate inside the crystal and therefore the crystal i& @/c and the latter elements do show up in the diagonal
not an omnidirectional mirror for this frequency. Actually, €elements ofG. However, since they always show up in
this information could already be read off from the modepaired products, for example, in the ter@§'T{0“ GY?,
profile of p-polarized light incident at 60° in Fig.(h). The they also give a real contribution to diagonal element&of
conclusion holds more generally: for largeg the critical ~ The T-matrix elements are also real whép>w/c, except
angle 6, increases, but it can be shown by expanding Eqwhen the matrix has a pole. Therefore, all guided modes
(37 around #;,,=90° that for every finiteD¢;/a anda/xn ~ must correspond to poles of theeor p components of the
there always is a finite interval of angles corresponding toN-planeT matrix T™) [see Eq(35)].

propagating-polarized light. In conclusion, crystals of iden-  First, the guided modes of a single plane will be deter-
tical and equidistant plane scatterers can reflect vector waveésined. There can be a guided mode when eilfféor T*? in

in almost all(but not in al) directions. Eg. (280 has a pole. NowT®® has a pole when 1
—V(w)G5(K|,Z,,2, @) vanishes. Using the same model
B. Guided modes for the optical potential as in Sec. Il F, we find the disper-

Besides propagating modes there can also be bourion refationx{)=Deg(w/c)?2 for one and only one guided
modes that do not correspond to incoming liggee Sec. )l Mode corresponding tepolarized light. Here is the posi-
Bound modes can be found by solving the LS equation in théive square roofkf—(w/c)?]¥?for k;>w/c. A single-plane
absence of an incoming field. In crystals of plane scatterergjuided mode with this dispersion relation was also found in
bound modes are guided modes. They have imaginary wavgef. [15], and in Ref[5] for scalar waves.
vectors in thez direction and they decay exponentially away A pole of T°? occurs when +V(w)Gy'(K|,24,2,,0)
from the planes. Their in-plane wave vectdgsare larger  vanishes, which is equivalent to the requirement Bigf«/2
thanw/c. With each mode, be it of the propagating or guidedequals—1. Now, in principle,D¢4 could be negative when
type, a nonzero local density of states is associated. In theodeling a slab of negative dielectric function as a plane
following, guided modes will be searched by looking for scatterer. However, in the physical situations that we are in-
nonzero densities of state@his is a method alternative to terested in, the effective thickness is real and posi(see
the one used in Ref5] where guided modes of scalar waves Sec. lll B. Therefore, there is no guided mode corresponding
were identified. to p-polarized light for a single-plane scatterer. This result
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was also derived in Ref.15], where only the cases of a guided modes forp-polarized light whenever £D/a
single plane and infinitely many planes were considered. =0. So in finite crystals o planes with a positive effective

At this point it is worthwhile to compare the guided thickness, there are no guided modes corresponding to
modes of a dielectric slathicknessd, dielectric constant) p-polarized light. This is in agreement with the result just
in air with the guided modes of an infinitely thin plane with obtained for the single plane, and with the results in Refs.
effective thicknes® 4= (¢ —1)d. For the slab, the number [15,2( for infinite crystals.
M of guided modes is the same for both polarizations in the In conclusion, there are at mokk guided modes in the

special case considered here, and equaB8&p finite crystal of plane scatterers, all modes corresponding to
s-polarized light. The comparison of the single plane and the
Mg p=1+[2dVe—1/\]. (42)  single slab indicates that waves in plane scatterers are a

) ood model fors waves in slabs, at least for frequencies
Here, [X] stands for the largest integer smaller than or equakround the first stop band. For thepolarized guided modes,
to X. In the large-wavelength limit there is a single guidedthe conclusion must be that in the finite slab structures there
mode for each polarization direction. The second guidegye guided modes which have no analogs in the crystal of
mode appears whea/ A =a/(2ydD.x). For example, fod plane scatterers.
=0.1a andD4=0.46, a second guided mode exists when

a/A>2.3. We are interested in frequencies aroush V. SPONTANEOUS EMISSION

=0.5, where the first stop band for normally incident light

occurs(see Fig. 2 For these frequencies, both the plane A. Application to layered dielectrics

scatterer and the dielectric slab have a singleolarized In free space, the spontaneous-emission fageof an

guided mode; the slab has a singlolarized guided mode, ~iom with dipole momentx and transition frequency

whereas the plane scatterer has no such guided mode at qualsu2Q3/(3mtieoc). When embedded in an inhomoge-

Now we determine the guided modes of a finite crystal of, 5,5 gielectric, the rafé will in general be different, as can

N parallel and equidistant planes, using the same Greery, t5nd with Fermi's golden rulggg]

function method as for the single plane. First look for the '

poles of the componers3™ (k,w). This is easy, because | ,

this component is identical to tHé-plane T matrix TN for I'(p,R,Q)= 772 Km' E(R)[*6(w—Q). (49
scalar waves, for which it was found that there are at st 0
guided modes in a crystal df planes[5]. For an infinite
number of planes, the guided modes form a band, as w
found in Refs.[15,19. Now look for guided modes corre-
sponding top-polarized light. The poles of the component
T2%M(kj, ) occur when the determinant fet>v )~

is equal to zero. An expression for this determinant can be 52
found just as was done for scalar waves in R&f. The [(uR,Q)=
result is that formp-polarized light there are guided modes if goC
the following equation has nontrivial solutiors «):

E, are the normal-mode solutions with eigenfrequenaiges
%¥ the wave equatiofd). The spontaneous-emission rate can
alternatively be expressed in terms of the Green function of
the medium

Im[p-G(RR.Q) - p].  (46)

(See Ref[40] for early derivations of this relation; in Ref.

[41] a modern derivation is given for inhomogeneous and
e "sin(NK,a)=0. absorbing dielectric medialn Eq. (46), G is the classical

43) dyadic Green function of the electric-field wave equatién

For homogeneous dielectrics, it is known that the total Green
The Bloch wave vectoK,, is still defined asa™? times the function is the sum of a transverse part that describes radia-
arccosine  of C,, which reads C,=cosha) tive decay and a longitudinal part descri_bing nonradiative
+[(«C?F)/(20?)Jsinh(xa) in terms of k. decay[42]. Here, Eq_s(45) and (46) are eq.uwaltlant, becagse

Equation(43) should lead to the dispersion relatianér) nonradiative decay is absent for dielectrics with real dielec-

for the guided modes, if they exist. When increasing thelfic functions. _ ,

frequency, new guided modes would appear that at first are Layered dielectricgnot necessarily plane scattereese
only just captured by the structure so that 0" . It is there- translation invariant in two directions, which can be chosen
fore convenient to count the guided modes in the small- to be the §,y) directions. Spontaneous-emission rates will

limit. Let the constanty be defined asy1+Fc%/(aw?). ©Only depend on the coordinate of the atomic positioR
Then Cp can be written up to second order anas = (X,y,Z). It is then easiest to first calculate the Green func-
tion in the plane representatic@(k,z,z,()). This Green

Cp= 1+ (xx)%2+0(k3®)=coshxx)+0(x%). (44 function must be Fourier transformed back to real space as in
Eq. (40) in order to find the local Green function of E@6)
To the same order ir, the Bloch wave vectoK, becomes that determines spontaneous-emission rates.
equal toiyx/a. Therefore, solutions of Eq43) will only A slight complication in doing the integratio@0) is that
exist when sinf(N+1)x«] equals sini{(x«), or equivalently  the plane representation f@(k|,z,z,Q}) is corotating with
when y=0. SinceF is taken to beD.g(w/c)?, there are the incoming wave vectok, a variable that must now be

kF—2(wlc)?

sif(N+1)Kpal+ 2(0l0)?
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integrated over. A fixed bas{x,y,} is needed instead and it~ >* @

is chosen such that the atomic dipole becomeg@,.,) in =200 ﬂ}\(\
P W/0 ¢ i ;Y:Ev,«A

the new representation. Write the two-dimensional integral= 5[

Jd?k; in polar coordinates aggdkjk/37dK;. After doing 10 sy
the angular integration, only diagonal elements of the dyadic 05} \»w-"
Green function survive. 00, > . : "
The total spontaneous-emission rate is the sum of two Position (units of a) Position (units of a)

contributions, the perpendicular and the parallel decay rate,
FIG. 4. Spontaneous-emission rates of dipoles near a single par-

3CF0M§ % tially transmitting plane scatterer, relativelig. The wavelength is
r,(z,Q)=- > ImJ dkjkG*, (473 chosen such thatw/A=0.5. Solid lines correspond to total
Qu 0 spontaneous-emission rafies for dipoles parallel to the plane, dot-
ted lines are radiative contributions 10,, and the dashed lines
SCFO,uf( % GSS+ G denotel’,. In (a), the effective thicknesB of the plane equals
I'(z,Q)=~— 0 ImJO dkkj————- (47D 0.4@a and in(b) Dey=10a.
o

To be precise, in Eq48d it was used that the tensor ele-
[Green-function argument(,z,z,Q)) were again droppefl. mentG?Z has a vanishing imaginary paiteading to a van-
The parallel decay rate has a contribution both frenand  ishing contribution to the density of stajesr k>€Q/c; for
p-polarized light (through G°° and G"?, respectively  the same reason, there is no guided-mode rate analogous to
whereas the perpendicular decay rate only haspalarized  Eq. (480 corresponding t&*". These properties were found
decay channel(through G?9. Notice that the (real in Sec. IV B.
5-function term inGg* does not play a role in the emission  With all partial emission rates spelled out now, we first
rates. The spontaneous-emission rates in E48g and study spontaneous-emission rates near a single plane, for
(47b) are integrals over all possible lengths of the in-planewhich the Green function in the plane representatiéh)
wave vector. Both rates can be subdivided into afeatures the single-plank matrix of Eq.(28). In Fig. 4(a),
propagating-mod¢or radiative-modgrate corresponding to spontaneous-emission rates as a function of position are plot-
the integration ok from 0 to()/c, and a guided-mode rate ted for Ds=0.46a. For both orientations of the dipole, far

which is the integral from(}/c to . away from the plane the rate approaches the free-space
value. Close to the plané&,, is larger tharl", but it consists
B. Spontaneous emission near plane scatterers of a rate into propagating modes that is less thignand a

guided-mode rate. Close to the plaig,is larger thanl’,

R . oM 1t the maximal values ofthe purely radiative I", occur
neous emission in layered structures will now be applied 1 omewnhat away from the plane

crystals of plane scatterers. Combine the general expressions The contribution of radiative and guidexwaves for an
(47) for spontaneous-emission rates in layered dielectric tom with 1= 1, is the same as for scalar waves with “sca-

with the Green functions in the plane representation th ar dipole momént”,u but since the total decay rat&, for

\évgézl?:;egpgid;gsicrﬂig E)f::)glgrri); ‘23' gLigsgemSgggsr%z vectqr waves is larger than for scalar waves, the relative
arallel decay rate near plane scatterers can be su,bdividgg ntributions ofs waves tol'/T'o are smaller for vector

b waves(by a factor 3/4).

'r?]t: d;h:Ztee(Léngte:d-Oglgoriuz)ezarr;ziaezs/z?moifl(;gergt rag 'a:xg' In Fig. 4(b), the same rates are plotted, this time for a
» app ®0, plane withD 4= 10a that reflects light almost ideally: near

an s-polarized guided-mode ratsd). Again, because of the the planel, is almost twicel'. The maximum values df,

absence op—polarlzed ggldgd modes_, the. perpendicular de'stiII occur away from the plane, although this has become
cay ratel’, is purely radiative. Here is a list of the nonzero

. ) invisible in Fig. 4b). The propagating-mode part &f, has
partial decay rates: decreased and is practically zero on the plane. The partial
o[ w2 alc emission rate into the guided mode has a much lafiger

( ) Im dkik|G®*5, (489 finite, not shownamplitude near the plane. The other promi-

0 nent difference in the two figures is that the “spike” in the
emission rates due to the guided modes has become much

Sr 3
I5(z0)=-5

3clo( uy\? [ narrower. Indeed, from Eq$39)— i
pr _ Hex oo s , g%39)—(41), it follows that the
Dz 2Q) ( Imj digkG™, (480 guided-mode rate decays exponentially away from the plane
like exp(—2K(11)|z|). It follows from the dispersion relation for
s 3¢l py 2 % . K(ll) that was obtained in Sec. IV B, that an increasa/R
LAz ==5q" " Imfn/cd kiG> (489 or in Dy will give narrower spikes.

In the limit that the atomic positioz becomes equal to
3¢ 9 e the plane positioz,=0, the spontaneous-emission rates can
T(z.Q)=— S | dkk/G?2 (489  DPe calculated analytically for both dipole orientations. For a
A2,Q2) a m kik G*% . :
2 0 dipole perpendicular to the planes,
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(a)
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Position (units of a) Position (units of a)
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FIG. 5. Spontaneous-emission rates of dipoles at the position of DoV o . AAALN .
the single-plane scatterer, as a function of the dimensionless param- -5 0 5 10 15 -5 0 5 10 15
eter é=mDgg/N. The ratel’, (solid line) is the sum of a rate into Position (units of a) Position (units of a)
radiative (dashed ling and into guided mode&dotted ling. The o S
purely radiative-mode ratE, is the dash-dotted line. FIG. 6. Spontaneous-emission ratgs (solid ling) and I',
(dashedl near a ten-plane crystal. For all plan&s,=0.46a. The
dotted line is the radiative part @f, . The part§a)—(d) correspond
(z,,Q0)=T,| 2+ i B §I‘ 14 1 arctari£) to four frequenciesta) a/A=0.2, (b) a/A=0.4, (c) a/A=0.5, and
2 e 0 2g2) 2°° & £ (d) a/A=0.6.
(49)

poles can couple to thepolarized guided modeg@nd be-
Similarly, for a dipole parallel to the plane, the three partialcausep—polanzed guided modes are absent in our model

tributi to the d : IS0 b din t As the frequency increases when going from Fi@) 6o
contributions fo the decay rate can also be expressed in e”ﬁg. 6(d), I', becomes more spiky, because the partial emis-
of the parameteg alone:

sion rate into the guided modéthe difference between the
3 solid and the dotted lines in Fig) ®ecomes more concen-
I (z,,0)=~I[1- éarctari1/¢)], (509 trated near the planes. The term “concentration” is appropri-
4 ate here, because the maximum amplitudes near the planes
are higher for narrower spikes. The same effect was observed
for the single plane in Figs.(d4,b, where the frequency is
: (50b)  kept constant an® ¢ is increased instead.
The purely radiative-mode raté, on average increases
due to the presence of the planes, whereas the radiative part
I's%z,,0)= %Fo (500 of I'y on average decreases. The same behavior occurs near a
o 4 single plane in Fig. 4 and for a perfect mirror.
Figure 1 showed that the optical modes mpolarized
In Fig. 5 the relative rates are plotted as a functiog.oThe light have discontinuities at the plane positions. There are
results can be checked in two limiting caseD =0 there  also discontinuities in the spontaneous-emission rates
is no plane and then indeed bdfh andI'y are equal to the for a single plane, for symmetry reaspnbut these are too
free-space valu€'y. The other limit is that of a perfect mir- small to be visible in Fig. 6. It can be understood that they
ror, whenDy¢ (and consequently) is sent to infinity. This are small from the fact that the discontinuities per mode are
limit is not visible in the figure, but the limiting values are averaged in the emission rate.
I',/ITy=2 andI',/T'(=0. These values indeed agree with The dotted lines in Fig. 6 are the radiative partslqf.
the well-known emission rates for atoms near perfect mirrord hese are similar to the radiative-mode rates for scalar waves
[21-23. Emission rates into guided modes vanish in the[5], but not identical, since id", not only s-polarized but
perfect-mirror limit; atz= z,, this is only the case by sending alsop-polarized light contributes, according to Eg.7b). In
D to infinity before puttingz equal toz,=0. This com-  particular, far away from the planes, the emission rate of
pletes the discussion of emission rates near a single planedipoles parallel to the planes consists of 758%olarized and
Now consider emission rates inside and near a crystal of 85% p-polarized light.[To be sure, light emitted by perpen-
numberN of plane scatterers. Results will be presented fordicular dipoles is 100%p polarized for all layered dielec-
N=10. In Figs. ®a-6(d), orientation-dependent trics, see Eq(473.]
spontaneous-emission rates are plotted for several frequen- For “large enough” photonic crystals, one expects inner
cies. For clarity in the pictures, the positions of the planes atinit cells to have optical properties similar to unit cells in the
a,2a, ...,1( are not shown as vertical lines this time. The infinite crystal. Are the ten-plane crystals large enough? This
most striking difference betweeh, and I, is thatI'y be-  depends on the properties of a single plane. In two extreme
comes very spiky near the planes, because only parallel déases, the crystal size does not matter. When the individual

where the dimensionless paramegas defined asrD¢/\.

3 arctan &)

r 3
P (za,9)=4—§2r0[1 ;
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planes do not reflect any light in any directiol &/a be related to a kind of mode competition betwsepolarized
=0), or when they reflect all light@.s/a=%), one finds Propagating and guided modes that we also found for scalar
the same emission rates in finite and in infinite crystals, bewaves[5]. On the other hand, for perpendicular dipoles all
cause forDgs/a=0 we have the free-space case and foremission is into radiative modes, so mode competition is
Dei/a= all unit cells are optically disconnected. Only in absent there and convergence sets in earlier.

intermediate cases €OD.x/a<) can finite photonic crys- For scalar waves the ten-plane structure could act as an
tals have an appreciabémd unit-cell dependent influence on Oomnidirectional mirror, whereas in Sec. IV A it was found
spontaneous-emission rates. that it is not an omnidirectional mirror for vector waves.

In the intermediate caséwe assumed¢/a=0.46), the Correspondingly, the radiative-mode LDOS fo_r scalar waves
single-plane reflection also depends on the frequency of that @/ A=0.5 dropped down tgalmos} zero inside the ten-
light. The planes reflect light better at higher frequenciesP'a”e omnidirectional mirror, vyhereas the emission rates in
because material dispersion was neglected. It appears that foid- 6(c) show that the radiative LDOS for vector waves
the lowest frequency considered in Fig.8)\=0.2 in (a),  Stays nonzero inside the crystgl. In the inner unit cells', di-
the emission rates in inner unit cells already are influence@oles parallel to the planes emit predominantly guided light.
Considerab|y by the Crystal_ The rates Vary in neighboringThe small amount of ||ght that leaves the structure is Strongly
inner unit cells, which indicates that the rates have not yeP polarized. This is the case arouad\ =0.5 only, where
converged to the infinite-crystal values. For higher frequens-polarized light is omnidirectionally reflected. Such strongly
cies, saya/\=0.6, individual planes reflect light much bet- Polarized emission is not a peculiarity of the plane-scatterer
ter. In the corresponding Fig(d, all inner unit cells look mModel, because it will also occur for a real Bragg mirror
alike and emission rates have converged. whenever light of only one of the two poIarlzat|oln dl_rectlons

Now consider a parallel dipole at a fixed position, veryiS omnidirectionally reflectc_ed. In the oyhgr plots in Fig. 6 for
close to a plane in an inner unit cell. From Fig. 6, one carhigher and lower frequencies, the radiative-mode pars,of
also appreciate how the guided modes will influence there the sums of emission rates into both polarization direc-
(frequency-dependengmission rate of a dipole very close to tions.

a plane. For frequencies/A =0.4 and higher, Figs. (6)—
6(d) show that emission into propagating modes is negligible
compared to emission into guided modes. The dipole falls
inside the guided-mode spike near the plane. As the fre- A theory was set up for the multiple scattering of vector
quency increases, the maximum amplitude of the spike inwaves by parallel planes, thereby generalizing previous work
creases. With the dipole still well inside the spike, the emisfor scalar waves to the more interesting but also more com-
sion rate of the dipole will increase as well. When increasingplicated case of light waves. Unlike for scalar waves, the
the frequency further, the spike becomes so narrow that th&reen function had to be regularized. This was accomplished
dipole ends up in one of the wings of the spike, until theby introducing a high-momentum cutoff. An effective scat-
dipole finds itself completely outside it. This will cause the tering theory emerged with a nonzeFanatrix that no longer
emission rates into guided modes to drop at higher frequerdepends on the cutoff. THEmatrix and Green-function for-
cies. The combined effect is a peak in the frequencymalism turned out to be very convenient for the calculation
dependent emission rates. Indeed, in R&8] the dipole of propagating and guided modes, as well as spontaneous-
emission ratgor more precisely, its-wave componentfor ~ emission rates, of finite photonic crystals of plane scatterers.
infinite crystals as a function of frequency shows a pro- A nonabsorbing plane scatterer satisfies a separate optical
nounced peak for dipole positiozsear a plandsee Fig. 3 theorem fors- and p-polarized light. The radiative and

in Ref. [19]). We can unambiguously attribute this peak toguided modes of-polarized light could be mapped onto
emission into the guided modes. modes for scalar waves. Tlsgolarized light has continuous

We can also understand how an emission peak will demodes, whereag-polarized modes have discontinuities at
pend onD¢ and on the distance to the plane. We have seetthe plane positions.
that spikes are narrower, with higher amplitudes, for larger Throughout the paper, we have stressed the similarities
D¢ and for higher frequencies. When assuming laiggt, and differences of optical properties of a plane scatterer or a
a dipole at fixed distance will feel a guided-mode enhancedrystal of plane scatterers as compared to the corresponding
emission rate for lower frequencies. However, the dipole willdielectric slab structures. It turns out thapolarized waves
also at lower frequencies begin to fall outside the range ofliffer more in the two cases thampolarized waves. First,
the spike. This explains why for fixed dipole position andbecause propagatingpolarized modes are different in the
increased ¢, the emission peak has a larger amplitude andwo cases because the Brewster angle is 90° for plane scat-
attains its maximum at a lower frequency, precisely as seeterers. Secondgy-polarized guided modes in finite slab struc-
in Fig. 3 in Ref.[19]. Similar reasoning suggests that for a tures have no analogs for plane scatterers. This was also
parallel dipole a bit further away from a plane but still closefound in Ref.[15] for the single plane and in Refgl5,20
to it (while keepingD ¢ fixed), an emission peak will occur for the infinite crystal.
at lower frequencies, with lower amplitude. Unlike for scalar waves, equidistant and identical plane

What can be appreciated best in Figa)6is that for par-  scatterers cannot be an omnidirectional mirror for all vector
allel dipoles the total emission rate converges faster than th@aves. Such omnidirectional mirrors consisting of dielectric
radiative and guided-mode partial rates separately. This cadayers do exist. For layered media, at least three refractive

VI. CONCLUSIONS, DISCUSSION, AND OUTLOOK
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indices are required in order to prevent complete transmisdone, but numerically the model would become more in-
sion of p-polarized light in the Brewster-angle direction volved, not so much because the planes have an overlap of
[3,4,43. measure zero, but rather because the plane representations
Omnidirectional reflection is a property of a dielectric for for nonparallel planes will be different. Numerical calcula-

external light sources. In this paper, omnidirectional reflections for nonparallel planes require the discretization of in-
tion could be related to the emission properties of atomi¢ividual planes. o _ _
light sources from within the finite crystals. The graphs of = Apart from extending it, one can extract other interesting
emission rategFig. 6) show that the emission by dipoles observables from the model. For example, the knowledge of
oriented parallel to the planes is affected much more stronglg‘e complete Green function makes it possible to calculate
by the planes than emission by perpendicular dipoles. This i80th far-field and near-field spectra of atoms embedded in
a characteristic of the plane-scatterer model, because the ahe finite crystal. It would be interesting to study spectra near
sence ofp-polarized guided modes is responsible for much"eguencies where the corresponding infinite crystal gives

of the difference. In the frequency interval whespolarized 1€ to & Van Hove singularity in the emission raf@f)].
light is omnidirectionally reflected, all light that exits the Crystals of plane scatterers can serve as a model environ-

crystal after a spontaneous-emission process wip pelar- ~ Ment to study the modification of several quantum optical

ized, irrespective of the orientation of the emitters. Still, theProcesses when atoms are embedded in photonic crystals.

major fraction of the light will be emitted into guided modes Transient effects in the spontaneous-emission rates are but

and stay inside the crystal. one example, thereby generalizing work done on a one-
For low frequencies, the single-plane reflectivity is lower, dimensional cavity formed by two plangé4]. Calculations

emission rates are less affected by the crystal, and finite-siZ&/€ underway that show photonic-crystal-induced modifica-

effects are appreciable also in the inner unit cells of the tentions of cooperative atomic processes.

plane crystal. For higher frequencies, planes reflect light bet-

ter and emission rates are more strongly modified. In the ACKNOWLEDGMENTS
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in the frequency-dependent emission rate of a parallel dipole _
close to a plane. We also reasoned that the peak will shrink APPENDIX: DERIVATION OF N PLANE T MATRIX

thickness or the distance to the plane is increased. Indeed, thgq (35) for the N-plane T matrix T™), by summing the

occurrence of a peak and its dependence on the effectifinite series in Eq(12), where theT,, are theT matrices of
thickness agree with numerical calculations on infinite CrYSsingle planes:
tals in Ref.[19]; some more numerical work is needed to

corroborate our prediction of the distance dependence. 1
What other purposes can plane scatterers serve in the fu- T (w)= 2f d2k”|kH Za) Tk 0)(Z, k)| (AL)
ture? The finite photonic crystals that can be made with them (2m)

have one-dimensional periodicity only, yet light propagation i ) )
in all three dimensions for all polarization directions is prop- ' «(K|,®) are 3x3 tensors, defined in E¢28). First allow
erly taken into account. The number of planes can be chosél Planes to have differertt, (k| , »); furthermore, allow the
at will, and further advantages are that all optical modes an@2rallel planes to have arbitratput all differeny positions
the complete Green tensor can be determined. Zy- ) ] ) o

Our calculations can be extended to situations where not 1he first-order term in the expansida) is simply the
all planes are identical; or one could allow light absorptionSUm 0f T, of Eq. (Al); the second-order term has the form
or gain in the planes by giving the effective thickness a com- 1 N
plex value; the number of planes per unit cell could also be CoL
increased to more than one. Such calculations are possible i(}zﬂ)Zf dk"a;:l 1K 2a) Talkys@) - [D(Ky, @) Jap(ky Zgl,
our formalism because the resul®34) and (35) for the T (A2)
matrix were generalized in EqA6) of the Appendix to
planes chosen at arbitrary positions, each with a diffefent where the dot denotes the inner product of 3 tensors.
matrix T,(K|,®), in other words with a different effective Furthermore, the property  (kj,z|Go(w)|k|,Z")
thickness. The model can therefore also be used to study the(2)25%(kj—k|)Go(k|,z,z',w) of the free-space Green
effects of disorder in the positions or in the optical propertieSunction was used. The matrix e|emeﬁ1§B of the matrixD
of the planes on the spontaneous-emission rates of embeddggb 3x 3 tensors which are defined as
atoms.

It would also be interesting to study models of finite pho-  [D(kj,®)],5=(1— 8,5)Go(K| 24,25, ) Tg(k|, o).
tonic crystals built up of nonparallel planes. This can be A3)
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The third-order term of the expansidf2) is as Ed.(A2),  nonzero. It follows thaD, s, D2, and all higher powers of
with D, replaced byD?,=% ,D,,-D,s, that is, the D have only three nonzero spatial components, namely, the
square of theNXN matrix D. Similarly, the fourth-order ss yv, and the zv components. As a consequence,
term features the cube dd, and so on. By summing all T{)(k;,w) has only two nonzero spatial components for all

orders, we have plane indicese and 8, namely, thessandvv component:
N
-1
M@=5 )zf 0%y 2 Ik za) Tk o)k 24, Talln=D%lp 0 0
™ *p= ) v

gy Tapkjw)= 0 T9[IN=D"],5 O

0 0 0
where theN-planeT matrix T2 (k; , w) is given by the series (A6)

N) =T, [I®Iy+D+D?+D%+- ..
Tag(ky @) =Ta [y Jas This generalizes the result of E@8) for the single-pland’

=T, [1®ly— D];Bl_ (A5) matricesT,, where the same two components were found to
be nonzero. The generalization is from one planB! fgaral-
Here, Iy is the NX N unit matrix and, as beford,is the 3  lel planes placed at arbitrary positions, each plane possibly
X3 unit tensor, so thatl®Iy],z= d,4!- Now in the plane with a different effective thickness. In the special case con-
representation, the Green tensor has the form as derived #idered in the main text that all planes are identical, in other
Sec. Il A, and the single-plang matricesT,(k|,») have  wordsifallT,(k|,w) are equal, then EGA6) simplifies into
the simple form as defined in E(8), with only T>°andT?’  Eq. (35).
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