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ABSTRACT

A well-known challenge for fabricating metamaterials is to make unit cells significantly smaller than the operating
wavelength of light, so one can be sure that effective-medium theories apply. But do they apply? Here we show
that nonlocal response in the metal constituents of the metamaterial leads to modified effective parameters
for strongly subwavelength unit cells. For infinite hyperbolic metamaterials, nonlocal response gives a very
large finite upper bound to the optical density of states that otherwise would diverge. Moreover, for finite
hyperbolic metamaterials we show that nonlocal response affects their operation as superlenses, and interestingly
that sometimes nonlocal theory predicts the better imaging. Finally, we discuss how to describe metamaterials
effectively in quantum optics. Media with loss or gain have associated quantum noise, and the question is whether
the effective index is enough to describe this quantum noise effectively. We show that this is true for passive
metamaterials, but not for metamaterials where loss is compensated by linear gain. For such loss-compensated
metamaterials we present a quantum optical effective medium theory with an effective noise photon distribution
as an additional parameter. Interestingly, we find that at the operating frequency, metamaterials with the same
effective index but with different amounts of loss compensation can be told apart in quantum optics.

Keywords: Nanoplasmonics, hyperbolic medium, spontaneous emission, quantum optics, metamaterials, effec-
tive medium, balanced homodyne detection

1. INTRODUCTION

Metamaterials are artificial structures with unit cells much smaller than the operating frequency, which allow
an effective-medium description of a type often not occurring in nature. Sometimes metamaterials are more
specifically defined as structures that exhibit negative refraction. There are several ways to extract the effective-
medium parameters. As long as the unit cells are much smaller than the operating frequency, the values for the
effective parameters essentially do not depend on the parameter retrieval method. More importantly, for these
metamaterials, the common opinion is that at the optical frequency, the only information that one obtains about
the metamaterial is its overall shape and (possibly tensorial) effective index. Moreover, once the unit cell is small
enough, varying the size of the unit cell does not change the effective parameters.

In practice it is extremely challenging to make unit cells much smaller than visible wavelengths. When unit
cells are not much smaller than the operating frequency, then the values of effective parameters do depend on
the parameter retrieval method chosen. This is not surprising and for these nanostructures it does not really
make much sense to enforce an effective-medium description.
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However, returning to true metamaterials, one can ask what is the status of the statement that in a metama-
terial only the effective index and the overall geometry play a role in optical experiments. Was this proven, or is
it an experimental finding? In this paper we address two fundamental limits of metamaterials where the usual
effective-medium theories no longer apply. First we consider the small-scale limit in Sec. 2, where the description
of the constituents of the unit cells in terms of bulk refractive indices breaks down. Here our key references are
Refs. 1, 2. Then in Sec. 3 we study the quantum optical limit, where an accurate description of the quantum
states of light that propagate through the metamaterial in some cases requires an effective-medium theory that
differs from the usual one for classical light. Here our key reference is Ref. 3. Our conclusions and outlook can
be found in Sec. 4.

2. SMALL-SCALE LIMIT

Since we address fundamental limits of metamaterials, we consider simple geometries that allow for analytical
treatment, so that our findings will not be obscured by numerical details. One-dimensional structures are obvious
candidates for which powerful transfer matrix methods exist, while point-scattering models would allow also
two-and three-dimensional inhomogeneities.4,5 Here we will consider metamaterials of the former, layered type.
A special class of layered metamaterials that attracts quite some attention nowadays are so-called hyperbolic
metamaterials, where the effective dielectric function is positive-valued in one direction and negative in the other.
This can occur in binary multilayer media for which one type of layer is a metal with negative-valued dielectric
function εm, while the other dielectric layer has a positive εd.

2.1 Local and nonlocal dispersion relations of hyperbolic metamaterials

The effective-medium description requires that unit cells are much smaller than an optical wavelength. Here we
ask what happens if we make the unit cells smaller and smaller, while keeping the filling fractions of the metal and
the dielectric the same. At some point the description of the layers in terms of their dielectric functions ceases to
apply, because new physical phenomena start to play a role. We anticipate that the first new phenomenon that
kicks in will be nonlocal response in the metal layer. We will compare predictions for metamaterials with local
and with nonlocal response. With local response it is meant that the polarization field P(r, ω) can be written as
ε0ε(r, ω)E(r, ω), whereas for nonlocal response the latter expression becomes ε0

∫
dr′ε(r, r′, ω)E(r′, ω). In our

description of the metamaterials their nonlocal response arises because the free-electron response of their metallic
constituents can no longer be described by the usual Drude model. We employ the hydrodynamic Drude model
instead, where inhomogeneities in free-electron densities give rise to a pressure.6,7 The corresponding pressure
waves, with typical wavelengths of one nanometer or less, make the response of the metamaterials nonlocal.

For local response the effective dielectric function parallel to the layers is given by εloc∥ = fdεd + fmεm,

and perpendicular to the layers by 1/εloc⊥ = fd/εd + fm/εm, where fm,d are the space-filling fractions of the
respective layers. The effective dispersion relation is k2⊥/ε

loc
∥ + k2∥/ε

loc
⊥ = k20. Thus with local response, constant-

frequency contours in the (k∥, k⊥) plane can become hyperbolas for metal-dielectric multilayers, and hence the
name hyperbolic metamaterials. With nonlocal response on the other hand, the dispersion relation of these
hyperbolic media becomes more complicated, actually no longer a hyperbola for large wave vectors, as we
reported in Refs. 1, 2. In the realistic parameter regime where the unit cell is much smaller than a wavelength
while the metallic layers are many wavelengths of the pressure waves thick, the nonlocal dispersion relation can
be approximated as

k2⊥
εloc∥

+
k2∥

εnloc⊥
= k20, with

1

εnloc⊥
=

1

εloc⊥
+

1

εhdm⊥
and εhdm⊥ =

kLmd

2i

εTm
εTm − 1

, (1)

where d = dm + dd is the total thickness of the unit cell, and kLm is the wave vector of the longitudinal waves
that equals [ω2 + iγω − ω2

p]
1/2/β, in terms of the Drude damping γ, the plasma frequency ωp, and the nonlocal

parameter β =
√
3/5vF that is proportional to the Fermi velocity.

The main message from Eq. (1) is that nonlocal response can modify effective parameters of metamaterials.
The modification is stronger for smaller unit cells, as one can verify for oneself by considering the dependence of
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εnloc⊥ on the unit cell thickness d. More generally, when making the unit cells smaller, one first enters the desired
subwavelength regime where the effective-medium properties of the metamaterial no longer depend on the size
of the unit cell, only on its geometry.8 But when continuing to shrink the unit cell, in our case corresponding
to unit cells with metal layers of less than 10 nm thick, then the size of the unit cell starts to play a role again
because of nonlocal response. The associated longitudinal pressure waves have wavelengths of the order of a
single nanometer in metals. Unit cells will not be in the subwavelength regime of the pressure waves, and these
waves probe the size of the metal constituents of the unit cell.

We also see from Eq. (1) that nonlocal response modifies the effective dielectric response normal to the layers,
not parallel to the layers. It is also intuitive that stronger nonlocal effects are to be expected in the direction
in which the hydrodynamic pressure waves are confined by the metal boundaries. Notice also that in the limit
β → 0 nonlocal response becomes negligible and the dispersion relation (1) tends to the usual local-response
hyperbolic dispersion relation, with effective dielectric response εloc⊥ in the normal direction.

2.2 Nonlocal blueshift of the optimal operating frequency

A hyperbolic metamaterial of finite thickness can be used as a so-called hyperbolic superlens. When placing the
source in the near field at one end of the lens, the image in the near field at the other end can be almost perfect,
at least for the operating frequencies that we discuss below. For perfect lensing, plane waves with different k∥,
even those with k∥ > ω/c should act together, i.e. in phase, to make the image. Such a lens is better if the phase
accumulated upon propagation in the normal direction depends less on k∥. When is this the case? From the

dispersion relation (1) it follows that k⊥ depends least on k∥ when εnloc⊥ → ∞. For local response the condition

is analogous but different, namely εloc⊥ → ∞. From these two different conditions it follows that the optimal
operating frequencies for perfect lensing with hyperbolic metamaterials are different: for local response, it is at
ωloc
res = ωp[fd/(fd + fmεd)]

1/2, whereas the hydrodynamical Drude model with nonlocal response predicts that
the optimal operating frequency should be chosen at the higher frequency ωnloc

res ≃ ωloc
res [1+ εd/(k

L
mdd)], see Ref. 2

for more details.

We choose a metamaterial with 36 unit cells, each unit cell consisting of a dielectric layer with dd = 6nm
and εd = 10, and a metal layer with dm = 3nm. The metal is described as a free-electron gas with the
Drude parameters of gold.2 With these parameters, it follows that the optimal operating frequency for the
superlens can lie considerably higher than expected based on local-response theory: we find ωloc

res = 0.41ωp,
whereas ωnloc

res = 0.465ωp. This is a manifestation in metamaterials of the nonlocal blueshift, the same effect
that is believed to be largely responsible for the recently observed 0.5 eV blueshift of resonance frequencies in
few-nanometer small plasmonic spheres.9,10 The nonlocal blueshift of the operating frequency from 0.41ωp to
0.465ωp would be clearly observable if the assumed ultrathin metal-dielectric multilayers can be fabricated. There
are interesting developments in this direction.11 For less extremely thin slabs, the nonlocal blueshift would be
smaller but could still be clearly observable in planar hyperbolic metamaterials.

2.3 Transmission through superlenses for local and nonlocal response

Since imaging has a lot to do with transmission, we will now first compare the transmission of plane waves
through the hyperbolic metamaterial for local and for nonlocal response, and we will do this at both frequencies
that we just identified as optimal according to the two respective theories.

We consider transmission both of propagating plane waves (k∥ < k0) and of evanescent plane waves (k∥ > k0),

since it is only the combination of both that makes the lens “super”. The result can be found in Fig. 1, at ω = ωloc
res

in panel (a) and ω = ωnloc
res in panel (b). Notice that these graphs were calculated based on the full nonlocal

dispersion relation that we did not present in its full glory here (but see Refs. 1, 2). What we can appreciate,
however, is that in panel (a) the transmission graph as a function of k∥ for local response is more smooth than

for nonlocal response. This is expected based on the divergence of εloc⊥ of the local-response version of the
approximate dispersion relation Eq. (1) near ω = ωloc

res . By contrast, in panel (b) it is the nonlocal transmission
curve that is smoothest. This is also as expected, since at ω = ωnloc

res it is εnloc⊥ (rather than εloc⊥ ) that diverges in
the approximate dispersion relation Eq. (1).

The transmission is bounded below unity for propagating waves (k∥ < k0), but shows higher resonances for
those evanescent waves (k∥ > k0) that correspond to a guided mode. Similar transmissions higher than unity
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Figure 1. Transmission through the hyperbolic metamaterial as described in the main text, in panel (a) for ω = ωloc
res =

0.41ωp; in panel (b) for ω = ωnloc
res = 0.465ωp. At both frequencies, there are considerable differences between the

predictions based on local and on nonlocal response.

can be found in Ref. 12. In Fig. 1 only the finite Drude damping prevents these resonances from being infinitely
narrow and infinitely high.

The final point that we would like to make about Fig. 1 is that nonlocal response does not “just” shift
the optimal resonance frequency to the blue: the local-response transmission curve at ω = ωloc

res in panel (a)
is clearly different from the nonlocal transmission curve at ω = ωnloc

res in panel (b). This will have the further
consequence, as we will see, that both theories predict different superlens images at their respective optimal
operating frequencies.

2.4 Near-field images of local versus nonlocal superlenses

Now that we know how well the various plane-wave components can be transmitted through the metamaterial, we
next study how in combination they can produce a nearly perfect near-field image. As the source we consider a
line source proportional to δ(y) parallel to and positioned at a distance of only 1 nm away from the metamaterial
lens. A large portion of the waves emanating from the source propagates all the way through the 36 unit cells,
to form an image on the back plane of the lens.

Figure 2(a-d) displays such images for four different operating frequencies in our range of interest, namely
from ωloc

res to ωnloc
res . For every frequency, we compare the image as predicted by local-response as compared to

hydrodynamic nonlocal response theory. Now the perfect image of an infinitely thin line source would again be
an infinitely thin line source. The superlens does not quite achieve that, but at the right operating frequency the
quality of the image comes close. For example, in panel (a) at ωloc

res we see a subwavelength local-response image
with a single dominant intensity peak with a FWHM width of less than half a plasma wavelength. In panel (d)
nonlocal-response theory predicts a similar image, but at ωnloc

res instead. Thus the superlens still performs as
a superlens when taking nonlocal response into account. (We found an analogous result for refractive-index
sensors.13) Panels (b) and (c) illustrate that the local-response image broadens while the nonlocal-response
image narrows as we increase the operating frequency from ωloc

res to ωnloc
res .

If we compare more closely the optimal local image in panel (a) to the optimal nonlocal image in panel (d),
then we see that the nonlocal image has smaller side peaks and hence is more localized and therefore a better
image of the line source than the local one. This is another important illustration of the fact that nonlocal
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Figure 2. Field intensities at the back end of the hyperbolic superlens, calculated both with local and with nonlocal
response, for different operating frequencies in the interval between ωloc

res and ωnloc
res . Panel (a): ω = ωloc

res = 0.41ωp, the
ideal operating frequency for local response; panel (b): ω = 0.43ωp; panel (c): ω = 0.45ωp; panel (d): ω = ωnloc

res = 0.465ωp,
the ideal operating frequency for nonlocal response.

response does not “just” shift the optimal operating frequency, but has interesting other physical effects too.
That nonlocal response predicts the sharper image in Fig. 2 is also interesting because it is counterintuitive:
nonlocal response is otherwise better known for smearing out sharp features, for example field enhancements
close to almost touching plasmonic dimers,14 near corrugated surfaces,15 or at the surface of nanowires with
realistic surface smoothness.16

2.5 Spontaneous emission inside hyperbolic metamaterials

After transmission through hyperbolic metamaterials, let us also briefly discuss spontaneous emission of quantum
emitters embedded inside them. Hyperbolic metamaterials have been proposed as simple structures by which
broadband enhancement of spontaneous-emission rates could be realized,17 with possible applications in the field
of quantum plasmonics.18,19 Actually in the limit of vanishing unit-cell size, the spontaneous-emission rate in
local-response theory even diverges for hyperbolic metamaterials, since on a hyperbola corresponding to a fixed
emission frequency there are infinitely many states (k∥, k⊥), with no bounds on k∥ or k⊥, that contribute to the
spontaneous-emission rate. There is no such broadband supersingularity for the more common elliptically shaped
dispersion relations, where there is also a continuum of states but the wave vectors on iso-frequency contours are
bounded.

Spontaneous emission in hyperbolic media has been measured recently, in layered20 and in wire21 metama-
terials. Considerable enhancement of the rates was found. Infinitely high spontaneous-emission rates were not
observed, though. There will always be something that keeps rates finite. The current main limiting factor is
the size of the unit cell, other factors being the finite size of the quantum emitter and damping.17,22

It is an interesting open question how strongly spontaneous-emission rates can be enhanced in realistic
hyperbolic metamaterials. To obtain high emission rates it is advantageous to fabricate multilayer metamaterials
with very thin yet very smooth surfaces. In this quest for high emission rates, we expect that unit cells will be
made smaller and spontaneous-emission rates will go up, and that at some point in the near future nonlocal effects
will start to play a role in metamaterials, certainly nonlocal blueshifts but perhaps also effects on spontaneous-
emission rates.

What influence will nonlocal response have on spontaneous-emission rates? In Ref. 1 we studied spontaneous-
emission rates in multilayered hyperbolic metamaterials. Our main finding is that these rates will always be finite,
even in the limit of infinitely small unit cells. This limit provides the upper bound for the enhancement. However,
the upper bound for the enhancement of the local density of states (LDOS), which is proportional to ω2/v3F, is
large, namely of order 107 for most metals. So in practice there is ample room for enhancing spontaneous-emission
rates before this fundamental limit set by nonlocal response is reached.

Proc. of SPIE Vol. 8806  88061F-5

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 09/17/2013 Terms of Use: http://spiedl.org/terms



3. QUANTUM OPTICAL LIMIT

Let us now consider unit cells that are much smaller than an optical wavelength so that an effective-medium
description is possible, but let us not make the unit cells so small that nonlocal effects play a role. Then the
common assumption is that for external light sources at optical wavelengths the medium can be described fully
in terms of its effective index and overall geometry. However, we have recently shown that this is not true in
quantum optics: two metamaterials with identical shape and identical effective index can have different optical
properties.3 Identical quantum states of light entering these metamaterials will give rise to different quantum
states of light after transmission or reflection, so these metamaterials that are effectively the same in classical
optics can be told apart in quantum optics. We discuss some elements of quantum electrodynamics in dielectric
media in Sec. 3.1, describe the experiment to tell apart two metamaterials with the same effective index in
Sec. 3.2, and discuss our accurate effective-medium theory in quantum optics in Sec. 3.3.

3.1 Quantum noise in Maxwell’s equations for lossy and amplifying media

In quantum electrodynamics, the electromagnetic fields become field operators. Without gain or loss, the quan-
tum field operators satisfy the same wave equation as the corresponding classical fields. By contrast, the wave
equation for the field operators in a lossy or amplifying medium differs from that in classical electrodynamics.
For example, in a one-dimensional situation, the wave equation for the vector potential can be written as23[

∂2

∂x2
+

ω2

c2
ε(x, ω)

]
Â(x, ω) = ĵ(x, ω), (2)

where the current operator ĵ(x, ω) is proportional to
√

|εI(x, ω)|, and εI(x, ω) is the imaginary part of the

dielectric function describing either loss or gain.3 Clearly, in the limit of no loss or gain, ĵ vanishes and Eq. (2)
becomes the classical wave equation for the vector potential in a dispersive and spatially inhomogeneous medium.
The operator ĵ(x, ω) describes the quantum noise that is associated with gain or loss.3,23–27

That loss or gain is associated with quantum noise can be derived from the so-called fluctuation-dissipation
theorem: the quantum noise is the fluctuation that is associated with loss or gain. One can also understand the
need for a driving term on the right-hand side of the wave equation from the following argument: in classical
optics, a homogeneous lossy medium has monochromatic damped plane waves as solutions. Both the vector
potential and the electric-field operator associated with this damped plane wave decay. In quantum optics this
would not be compatible with the requirement that the equal-time commutator between the electric field Ê(x, t)
and the vector potential Â(x′, t) is constant in time, proportional to δ(x − x′), and with the same value in all
of space. Only when solving Eq. (2) by taking the quantum-noise driving term into account will equal-time
commutators of field operators stay constant in time for media with gain or loss.

3.2 Telling apart metamaterials with the same effective index

We would like to investigate how metamaterials could be used in quantum optics, and started with the basic
question whether metamaterials can be described by their effective index εeff in quantum optics.3 Now since
metals are an important constituent of many metamaterials, loss should be taken into account in metamaterials.
An important branch of plasmonics is active plasmonics where one actively modifies the material properties.28

An important example of active plasmonics is active loss compensation. In loss-compensated metamaterials, the
loss in one part of the unit cell is compensated for by the gain elsewhere.29 Such effectively lossless metamaterials
would have a better performance as near-field lenses.30

For quantum optics it is is important to keep in mind that there is no lossy metamaterial without noise.31 The
existence of quantum noise does not immediately imply that the effective index no longer accurately describes
the medium in quantum optics. For example, an “effective quantum noise” could perhaps be well described by
the effective index. But if loss is compensated by gain, is an effectively lossless metamaterial also effectively free
of quantum noise?

To answer this, we studied three types of multilayer metamaterials: one with two types of lossy media, one
with two types of gain media, and finally a loss-compensated metamaterial where a lossy metal layer alternates
with a dielectric layers with embedded dye molecules. The latter exhibits linear gain. For detailed descriptions
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Figure 3. Sketch of the quantum optical experiment that can be used to detect at optical wavelengths different optical
properties of two metamaterials with the same effective index but different amounts of loss compensation. Squeezed states
of light enter the layered metamaterial from both sides. The quantum state of light that exits the metamaterial on the
right enters a balanced homodyne detector, where its noise properties (variances, uncertainties) are measured.

how to create amplification in metamaterials we refer to Refs. 32, 33. For each of the three types of layered
metamaterials, we shine squeezed light onto both of its sides, and analyze the output state of light using balanced
homodyne detection, as sketched in Fig. 3. This is a standard experiment in quantum optics to measure the noise
properties of the light (its variance, uncertainty). First we compared the variance of the electric field that leaves
the metamaterial using an exact multilayer theory with the variance based on an effective-index theory. In this
quantum optical effective-index theory, the effective quantum noise of a metamaterial can be described entirely in
terms of its effective dielectric function. What this theory boils down to is to replace in the wave equation Eq. (2)
the spatially varying dielectric function ε(x, ω) of the metamaterial by its effectively homogenized value εeff(ω),
and to replace the quantum noise by an effective quantum noise ĵeff(x, ω) that is proportional to

√
|εeff,I(ω)|.

We found that for the gain-gain and for the loss-loss metamaterials this is an accurate effective description of
the metamaterial in quantum optics.

However, for loss-compensated metamaterials we find significant differences between the variance of the field
according to the exact multilayer theory and according to the effective-index theory, as illustrated in Fig. 4. The
blue solid line is the exact multilayer theory for the loss-compensated metamaterial, while the red dotted curve
describes the variance of a homogeneous medium with the same effective index. Thus with balanced homodyne
detection we can tell apart two metamaterials in quantum optics even if their effective indices are the same, if
they differ by the amount of loss compensation.

3.3 Quantum optical effective-medium theory

Loss compensation is a successful strategy in active plasmonics and it also works in quantum optics: a lossy
dielectric response and an amplifying response can cancel each other so as to produce an (almost) lossless effective
response. Nevertheless the quantum optical effective-index theory breaks down in case of loss compensation, as
illustrated in Fig. 4. The reason is that by taking an effective quantum noise ĵeff(x, ω) proportional to

√
|εeff,I(ω)|,

this theory assumes that quantum noise associated with loss can be compensated for by quantum noise associated
with gain, just like loss is compensated by gain.

The exact multilayer theory does not exhibit such a quantum noise compensation: the noise sources add up
rather than compensate each other. From the exact multilayer theory we distilled a quantum optical effective-
medium theory that features an additional effective parameter: besides the usual effective index, an effective
noise photon distribution is defined that grows when more loss is compensated by more gain. More details are
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Figure 4. Output variance of a metamaterial consisting of 6 nm thin films of silver alternating with 60 nm thin dielectric
layers doped with dye molecules that are pumped and produce linear gain (details in Ref. 3). Blue solid line: exact
multilayer theory for propagation of quantum light. Red dotted curve: quantum optical effective-index theory; green
dashed curve: quantum optical effective-medium theory of Ref. 3. The yellow-green frequency interval corresponds to
net gain, outside of this interval the medium is effectively lossy. A variance below unity corresponds to squeezed light,
otherwise the light is not squeezed.

given in our Ref. 3. This quantum optical efective-medium theory is shown in Fig. 4 as the green dashed curve,
and notice that the agreement with the exact theory is very good.

4. CONCLUSIONS AND OUTLOOK

In this paper we have reviewed two fundamental limits for metamaterials. In the small-scale limit we found
that nonlocal response starts to play a role when making characteristic lengths of the metal constituents of
the unit cell of order smaller than 10 nm.1 For quantum emitters embedded into hyperbolic metamaterials,
spontaneous-emission rates can differ drastically from what would be expected on the basis of an effective-
medium theory. In local-response theories, the rate even diverges in the limit of infinitely small unit cells.
We find that effective-medium parameters are to be computed differently when entering the nonlocal-response
regime, and that spontaneous-emission rates enhancements can be very large but stay finite even in the limit of
infinitely small unit cells. We expect that our theoretical results for metamaterials in the small-scale limit will
soon become relevant for a next-generation class of layered hyperbolic metamaterials, with layers of well-defined
few-nanometer thickness.

If one makes a hyperbolic lens from a hyperbolic metamaterial of finite thickness, then objects in the near field
of the lens are imaged nearly perfectly on the other side of the lens, at least for the optimal resonance frequency of
the metamaterial. We find that nonlocal response blueshifts this optimal frequency, which is an important result
when designing and optimizing hyperbolic superlenses.2 Interestingly, sometimes nonlocal response predicts the
better imaging when comparing local and nonlocal response at their respective optimal frequencies.

In the quantum optical limit, it is not enough to re-evaluate the values of the effective parameters. Rather, an
additional effective parameter is needed that quantifies the amount of loss compensation that goes on inside the
metamaterial. This information beyond the effective index enters our quantum optical effective-medium theory.3
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