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Abstract. Using a discrete mode theory for propagation of quantum optical states, we investigate the consequences of
multiple scattering on the degree of quadrature entanglement and quantum interference. We report that entangled states can
be created by multiple-scattering. We furthermore show that quantum interference induced by the transmission of quantized
light through a multiple-scattering medium will persist even after averaging over an ensemble of scattering samples.
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INTRODUCTION

The propagation of waves in complex scattering media
can result in many fascinating phenomena such as An-
derson localization [1], enhanced coherent back scatter-
ing [2, 3], and universal conductance fluctuations [4].
Recently it was shown experimentally that light-matter
interaction is strongly enhanced in disordered photonic
crystal waveguides, enabling cavity quantum electrody-
namics with Anderson-localized modes [5]. This poten-
tially makes disordered structures useful in future quan-
tum information processing.
Optical quantum information processing schemes rely

on interference among multiple independent quantum
states, i.e. quantum interference, to generate quantum
correlations and entanglement. The possibility of us-
ing multiple scattering media to interfere independent
quantum states appears appealing since it is inherently
scalable to multiple input states. To this end meso-
scopic quantum interference effects are required since
they would persist even after averaging over all realiza-
tion of disorder, thereby providing robust and predictable
quantum correlations.
Here we report on the effects of quantum interfer-

ence induced by combining an arbitrary number of
quantum optical states in a random multiple scattering
medium [6]. We identify the role of quantum interfer-
ence on the degree of photon correlations between two
transmission paths through the medium and the degree
of continuous variable entanglement. The investigation
is performed using a scattering matrix formalism and for
the statistical properties we rely on random matrix the-
ory.
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FIGURE 1. Sketch of propagation through a complex scat-
tering structure of length L and transport mean free path �.
Quantized light is incident to the left and the correlations be-
tween two output modes on the right are analyzed. The oper-
ators âi and âα corresponds to the annihilation operators of
modes i and α , where Roman and Greek subscripts denote
input and output modes respectively. The correlations between
two different output modes α and β are analyzed.

MODEL AND QUANTUMMEASURES

We describe propagation of quantized light through a lin-
ear, elastic, multiple scattering medium of length L and
transport mean free path �, see Fig. 1. To model this we
use a quasi one-dimensional discrete mode theory which
is known also to describe well the propagation in slab
geometries [7] and has previously been used to describe
propagation of quantum optical states in complex struc-
tures [8, 9, 10]. Experimentally such systems have been
realized e.g. in titania powder samples [11, 12] or disor-
dered photonic crystal waveguides [5].
We apply the scattering matrix for the propagation of

light and use random matrix theory on the scattering ele-
ments. Thus we relate the photon annihilation operators
âα and âi of output and input modes through âα=∑i tαiâi,
where the summation is over all N possible input modes
at each end of the waveguide and tαi denotes the complex
scattering matrix element.
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As a measure of quantum interference we use the nor-
malized photon number correlations between two differ-
ent output modes, i.e. the 2-channel correlation function

Cα ,β =
Δn̂α n̂β

〈n̂α〉
〈
n̂β

〉 , (1)

where
Δn̂α n̂β =

〈
n̂α n̂β

〉−〈n̂α〉
〈
n̂β

〉
, (2)

〈 :〉 denote the quantum mechanical expectation value,
the indices α and β denote different output modes and
n̂α = â†α âα is the photon number operator where â†α (âα )
is the photon creation (annihilation) operator of mode
α . This quantity describes the conditional probability of
detecting photons in mode α given a measurement of
photons in mode β or vice versa.
Furthermore as a measure for entanglement we calcu-

late the degree of quadrature entanglement [13, 14, 15]

εα ,β = Δ(X̂α − X̂β )
2Δ(Ŷα + Ŷβ )

2, (3)

where X̂α = 1√
2
(â†α + âα) and Ŷα = i√

2
(â†α − âα) are the

quadrature operators. The degree of quadrature entangle-
ment is a measure of the separability of the states in two
modes and the value εα ,β < 1 implies that the states are
inseparable, i.e. entangled [13, 14, 15].

ENSEMBLE AVERAGE

Since multiple scattering is a random process we need to
describe the average values for an ensemble of scattering
media having the same scattering properties. From ran-
dom matrix theory one can relate the ensemble averages
of products of amplitude transmission coefficients to the
classical short- and long-range correlation functions, C1
and C2, and the average conductance, g as [16]

t∗αitα j = τδi j, (4)
t∗αit∗β jtβktαl = τ2

(
C1δilδ jk+C2δikδ jl

)
, (5)

with τ = gN being the average single channel intensity
transmission coefficient and the bar denotes ensemble
averaging. These expressions are non-perturbative and
valid in the entire mesoscopic regime [16]. From the val-
ues of C2 and the normalized average conductance g,
we define the transitions from the quasi-ballistic to the
weakly disordered regime (C2=0) and from the weakly
disordered to the localized regime (g= 1). The meso-
scopic regime is defined as the regime in which two
speckle spots are correlated after ensemble averaging
(C2 > 0). The values of C1 and C2 depend both on the
number of modes N and the degree of disorder, which
is contained in s = L/� and g−1. The dependence of C1,

C2, and g on the number of modes N is non-trivial, but
the values of C1 and C2 are independent of N on the
transition between the quasi-ballistic and the mesoscopic
regimes, s≈2, and tend toward the same value far into the
localized regime, g−1� 1 [17]. The values ofC1 andC2
have qualitatively the same behaviors versus disorder in
the various regimes for different N.
Let us now define the ensemble averaged 2-channel

correlation function as the separate ensemble average of
the nominator and denominator respectively, i.e.

Cαβ =
Δn̂α n̂β

〈n̂α〉〈n̂β 〉
. (6)

Notice that this definition trivially yields zero for in-
cident coherent states corresponding to classical light
states independent of the amount of scattering.
Using the above described averaging approach the nor-

malized disorder averaged photon number correlations,
Cα ,β , and the degree of quadrature entanglement, εα ,β ,
are related to the classical short- and long-range cor-
relation functions, C1 and C2. Thereby the ensemble-
averaged 2-channel correlation function is found to
be [6]

Cαβ =

(C1+C2)

⎡
⎣
(

∑
i
〈n̂i〉

)2
+∑

i
(Δn̂2i −〈n̂i〉)

⎤
⎦

C1

(
∑
i
〈n̂i〉

)2
+C2

(
∑
i
〈n̂i〉2+2∑

i, j>i
|〈â†i â j〉|2

)−1,

(7)
and the ensemble averaged QVP is

εαβ = 1+4τ∑
i

Δâ†i âi

+4τ2
⎡
⎣C1

(
∑
i

Δâ†i âi

)2
+C2∑

i, j
Δâ†i â jΔâ

†
j âi

⎤
⎦ .(8)

For different incident Fock (i.e photon) states the ef-
fect of quantum interference is found to survive ensem-
ble averaging and manifest itself as increased photon cor-
relations when the quantum states are incident frommore
than one direction. The quantum interference effect in-
creases with the amount of scattering and can even be-
come positive, see Fig. 2. This highly counterintuitive
result signify that having detected a photon in one out-
put mode increase the possibility of detecting one in an-
other output direction even though the measurement has
removed at least one photon from the system. It is fur-
thermore demonstrated that it is possible to use a multi-
ple scattering medium to induce entanglement between
output modes, while this entanglement does not survive
ensemble averaging [6] (not shown in the figure here).
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FIGURE 2. The ensemble averaged 2-channel photon cor-
relations, Cαβ versus s=L/� for N = 50. Solid curves show
Cαβ for Fock input states with a total of two photons inci-
dent from either one, |2 >, or two, |1,1 >, directions, dashed
curves are for three photons incident from either one, |3 >, or
three, |1,1,1 >, directions and the dotted curves are for four
photons from either one, |4 >, or four, |1,1,1,1 >, incident
directions. The difference inCαβ between having one and more
input states is due to quantum interference. The symbols ◦, ×,
and ∗ on the abscissa correspond to the experimental structures
studied in Refs. [12], [11], and [18] respectively.

In Fig. 2 we indicate the position of three existing
multiple scattering structures from the literature, where
the number of modes N has been scaled to match the
value used in the calculations. Ref. [12] concerns trans-
mission through two scattering surfaces, which mimic a
multiple scattering medium. This corresponds to the dif-
fusive limit where quantum interference will be present
in the speckle pattern, but not survive ensemble averag-
ing. In Ref. [11] a titania powder is used with sample
length L=20μm and transport mean free path �≈0.9μm,
which corresponds to the mesoscopic regime. Such sam-
ples support a large number of modes (N>103) and thus
g	1, which means that this type of sample is in the
weakly disordered regime where quantum interference
effects are modest, cf. Fig. 2. This illustrates the im-
portance of using multiple scattering samples supporting
only few modes in order to observe quantum interfer-
ence. A disordered multimode photonic crystal waveg-
uide is exactly such a system and for N≈5 and assum-
ing typical experimental parameters of �≈20μm and
L=100μm [18] gives rise to sizeable quantum interfer-
ence effects that will be observable in an experiment, cf.
Fig. 2.
In conclusion, we have shown that the complex pro-

cess of multiple scattering induces quantum interference
that persists after ensemble-averaging. Furthermore our
work shows that creation of quadrature entanglement by
multiple scattering of squeezed quantum states is possi-

ble while such quantum correlations do not persist after
ensemble averaging. It would be interesting to investigate
the possibility of entanglement creation in the backscat-
tering direction since fascinating correlation phenom-
ena are known to occur here also for classical measure-
ments [2, 3].

ACKNOWLEDGMENTS

The authors acknowledge S. Smolka, J. G. Pedersen, U.
L. Andersen and A.-P. Jauho for stimulating discussions,
and L. S. Froufe-Pérez for providing the data for C1, C2,
and g. We gratefully acknowledge the Council for Inde-
pendent Research (Technology and Production Sciences
and Natural Sciences) for financial support.

REFERENCES

1. P. W. Anderson, Phys. Rev. 109, 1492–1504 (1958).
2. M. P. van Albada and A. Lagendijk, Phys. Rev. Lett. 55,
2692–2696 (1985).

3. P. E. Wolf and G. Maret, Phys. Rev. Lett. 55, 2696–2700
(1985).

4. P. A. Lee and A. D. Stone, Phys. Rev. Lett. 55, 1622–1626
(1985).

5. L. Sapienza et al., Science 327, 1352–1355 (2010).
6. J. R. Ott, N. A. Mortensen, and P. Lodahl, Phys. Rev. Lett.
105, 090501 (2010).

7. C. W. J. Beenakker, Rev. Mod. Phys. 69, 731 (1997).
8. C. W. J. Beenakker, Phys. Rev. Lett. 81, 1829 (1998).
9. M. Patra and C. W. J. Beenakker, Phys. Rev. A 61, 063805
(2000).

10. P. Lodahl and A. Lagendijk, Phys. Rev. Lett. 95, 153905
(2005).

11. S. Smolka et al., Phys. Rev. Lett. 102, 193901 (2009).
12. W. H. Peeters, J. J. D. Moerman, and M. P. van Exter,
Phys. Rev. Lett. 104, 173601 (2010).

13. L.-M. Duan et al., Phys. Rev. Lett. 84, 2722–2726 (2000).
14. R. Simon, Phys. Rev. Lett. 84, 2726–2730 (2000).
15. S. Mancini et al., Phys. Rev. Lett. 88, 120401 (2002).
16. G. Cwilich, L. S. Froufe-Pérez, and J. J. Sáenz, Phys. Rev.
E 74, R045603 (2006).

17. A. García-Martín, F. Scheffold, M. Nieto-Vesperinas, and
J. J. Sáenz, Phys. Rev. Lett. 88, 143901 (2002).

18. S. Smolka et al., New J. Phys. 13, 063044 (2011).

84

Downloaded 31 Oct 2011 to 192.38.90.11. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/about/rights_permissions


