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ABSTRACT

In tiny metallic nanostructures, quantum confinement and nonlocal response change the collective plasmonic
behaviour with resulting important consequences for e.g. field-enhancement and extinction cross sections. Here
we report on nonlocal resonances in the hydrodynamical Drude model for plasmonic nanostructures that have
no counterpart in the local-response Drude model. Even though there are no additional resonances in the visible
due to nonlocal response, plasmonic field enhancements are affected by nonlocal response. We present both
analytical results for simple geometries and our numerical implementation for arbitrary geometries, and address
computational issues related to the several length scales involved.
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1. INTRODUCTION

Sub-wavelength metal nanostructures are studied for many reasons, for example for their abilities to confine and
enhance optical fields,1 to sense optical properties of surrounding media, to work as antennae or waveguides and
to interact with individual quantum light sources.2, 3 Miniaturization is an ongoing process in nanoplasmonics,
enabled by a scale invariance of solutions to Maxwell’s equations.1 It is challenging to fabricate ever smaller metal
structures and to efficiently excite surface plasmons in them.4, 5 Another type of challenge is to ascertain that
nanoplasmonic structures indeed have the designed properties such as sub-wavelength spatial field distributions.
Increasingly, electron beams are employed as probes to this end,6 in particular electron energy loss spectroscopy
(EELS)7–9 of which the energy resolution has greatly improved in recent years, and cathodoluminescence.10

More compact structures also have the advantage of less ohmic loss during transport, although the smaller
structures have a relatively larger surface whereby loss at metal surfaces becomes increasingly important. Besides
loss, another fundamental challenge for nanoplasmonics is nonlocal optical response, and the one we will address
here. It is also known as spatial dispersion. In general, the response of a medium to a certain wave is nonlocal,
if the medium has more ways to transport energy than via that wave, as will be explained in Sec. 2. Examples
are superconductors, doped semiconductors, and metals. Here we focus on the latter case, in particular on light
interacting with noble metals such as gold and silver. Strictly speaking, in metals the optical response is always
nonlocal, but it is usually safe to neglect this, so not all books on plasmonics need to be rewritten. However, as
we will explain and illustrate below, its effects become noticeable both for nanometer-sized metal structures and
for larger metal nanostructures with nanometer-sized spatial variations.
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With non-negligible nonlocal response, the concept of the refractive index, even of a spatially inhomogeneous
refractive index n(r, ω) =

√
ε(r, ω), becomes inadequate. In a medium with nonlocal response, the linear optical

polarization field P(r, ω) at a position r is not a function of the electric field E(r, ω) only at that position, but
rather by a weighted spatial integral over E(r′, ω), with weights peaking at r′ = r:

P(r, ω) = ε0

∫
d3r′ χ(r, r′, ω)E(r′, ω). (1)

The response is smeared out or filtered in the sense that an infinitely localized electric fieldE(r′, ω) = E0δ
3(r′−r0)

gives rise to a smeared-out polarization field P(r, ω) = ε0χ(r, r0, ω)E0. In the hydrodynamical Drude model
that we will use to describe nonlocal response in metals, the smearing out is caused by charge density waves,
a collective movement of the free electrons induced by the light. In the usual local-response limit, χ(r, r′, ω)
reduces to χ(r, ω)δ3(r−r′). Then there is no smearing out, as Eq. (1) shows: in the local-response limit, infinitely
localized electric fields give rise to infinitely localized polarization fields.

Finding solutions to Maxwell’s equations becomes harder with nonlocal media, but several exact solutions
exist for simple geometries such as wires11, 12 and spheres13 and plane surfaces.14 These exact solutions are
important, both because they give insight in the new physics emerging in the nonlocal-response regime, and
because wire and sphere geometries happen to be important in nanoplasmonics, since they can be fabricated
and have many applications. We recently studied analytically how optical properties of plasmonic nanowires are
influenced by nonlocal response,12 thereby also identifying the cause of conflicting results in the recent literature.
In Sec. 3 we present some further analytical results on nanowires.

For all but the simplest geometries, numerical methods are needed to solve Maxwell’s equations. That is the
situation for local response and even more so for nonlocal response. While for local response problems standard
software packages exist, such Maxwell solvers do not exist if the response becomes nonlocal. We developed a
nonlocal-response add-on to COMSOL that can tackle arbitrary geometries, tested it to be quite accurate, and
studied plasmonic dimers with it, which are known to give strong locally enhanced field strengths.15 We present
some further numerical results for field enhancement near plasmonic dimers in Sec. 4, and conclude in Sec. 5.
But first we introduce the theory in Sec. 2.

2. THEORY: HYDRODYNAMICAL DRUDE MODEL

In the usual local-response Drude model, the free-electron density in a bulk metal is a constant n0 that is known
to influence the plasma frequency ω2

p = n0e
2/(ε0m0). By contrast, in tiny metal structures described by the

hydrodynamical Drude model, the density varies both in space and time. The theory allows for longitudinal
pressure waves in the electron density, analogous to sound waves. The free electrons are described collectively by
their density n(r, t) and velocity vector field v(r, t). In the linearized hydrodynamical Drude model, the density
and velocity are expanded around the equilibrium values in the absence of light, and equations of motion are
derived for the external-field induced first-order corrections that are assumed to be small. In that linearized
regime, the current density becomes J(r, t) = −en0(r)v(r, t). Coupled wave equations can be derived for the
electric field and for the current density.12, 16 The Maxwell wave equation for the electric field

∇×∇×E =
ω2

c2
E + iωμ0J (2)

is driven by the current density, while in turn the wave equation for the current density

β2∇ [∇ · J ] + ω (ω + iγ)J = iωω2
pε0E (3)

is driven by the electric field. The term β2∇ [∇ · J ] with β proportional to the Fermi velocity is the novelty
here; without it, the equation would reduce to Ohm’s law J = σ(ω)E where σ(ω) is the Drude conductivity, and
the response would be local. The usual Maxwell boundary conditions are not enough to find a unique solution
to these coupled equations (2) and (3). Additional boundary conditions are needed. Before choosing the level
of description for the equilibrium charge density profile n0(r) across a metal-dielectric interface, there is not a
unique answer to the question how many additional boundary conditions are needed.17 For simplicity we neglect
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quantum tunneling of electrons across the interface, thereby approximating n0(r) across the interfaces by a step
function that vanishes outside the metal and assumes the constant bulk value n0 inside the metal. After that
choice, it immediately follows from charge conservation that the component of J normal to the interface vanishes
at the interface. This already counts as an additional boundary condition, and this one is enough to find unique
solutions to the coupled wave equations.17 The logic behind our neglect of quantum tunneling is that nonlocal
response will become important at length scales of 10 nm or less, as we will see, whereas quantum tunneling is
important at distances of 1 nm or smaller.18, 19

In a series of recent papers, for example in Refs. 20, 21 (the latter being an SPIE proceedings by ourselves)
and based on older work on excitons,22 a modification of the hydrodynamic model was used, leading to quite
spectacular predictions of novel resonances in the visible due to nonlocal response, where the only modification
consists of replacing the gradient-of-the-divergence term ∇ [∇ · J ] in the wave equation (3) by the Laplacian
∇2J . We recently found out and showed that this modified model is of limited use, since its predictions in all
but the local-response limit are quite different from the hydrodynamical model itself.12 We only summarize our
findings here. The justification to use the modified model could be that the solutions are easier to find and do
not differ much from the ones for the hydrodynamical model, or at least to derive that such is the case in some
parameter regime. There seems to be a justification in the quasi-static regime, where the curl of the electric field
is assumed to vanish. For by taking the curl of Eq. (3), one finds that the curl of J is proportional to the curl of E.
By elementary vector analysis it then follows that in the quasistatic regime we can replace ∇ [∇ · J ] in the wave
equation (3) by the Laplacian term ∇2J . Why does this only seem to be a justification for the modified model,
which in Ref. 12 we called the ‘curl-free model’? Because Eq. (3) with the Laplacian contains no longer the
information that E and J were assumed to have vanishing curl, and because for consistency with the quasistatic
approximation the double-curl term in the other wave equation (2) should then also be left out. However, this
double-curl term is kept in the curl-free model, so that one can say that the curl-free model amounts to taking
the quasi-static limit in only one of the two coupled equations of the linearized hydrodynamical model. We have
shown that the solutions of the coupled wave equations in the curl-free model consequently are not curl free.12

In summary, there is no justification for the curl-free model in the quasi-static limit. This qualitative analysis
does not tell how much the solutions of the hydrodynamic and the curl-free model differ quantitatively, but we
address this issue for a specific geometry in Sec. 3.

However, before doing calculations for a specific geometry, it is useful to eliminate the electric field from the
coupled wave equations (2) and (3), thereby obtaining separate equations for the curl and for the divergence of
the current density, respectively: (

β2∇2 + ω2 + iωγ − ω2
p

)∇ · J = 0, (4)
[
c2∇2 + ω2ε(ω)

]∇× J = 0. (5)

Without damping, they become the Boardman equations.23 Their importance lies in the fact that for arbitrary
geometry, Eq. (4) has exponentially decaying solutions of ∇ ·J for ω < ωp and propagating solutions with some
damping for ω > ωp. This shows quite generally that new resonances can occur due to nonlocal response, but
only above the plasma frequency, for those frequencies for which the propagating longitudinal waves become
resonant standing waves in nanometer-sized confined geometries.

3. ANALYTICAL RESULTS FOR NANOWIRES

We study the extinction cross section of infinitely long nanowires with nonlocal response to normally incident
TM-polarized light.12 We expand the fields inside and outside the metal in terms of Bessel functions, which the
reader may not find surprising, but for the hydrodynamic model the important novelty is that inside the metal
there is a combination of divergence-free (‘transverse’) and curl-free (‘longitudinal’) waves, see also Ref. 11. The
fields inside and outside the metal are then glued together so as to satisfy Maxwell’s boundary conditions plus
additional boundary conditions.

Our main findings are that in local response, there is a well-known extinction maximum at ωsp = ωp/
√
2,

while the hyrodynamical Drude model predicts a blueshift of that resonance. This blueshift is larger for smaller
wire radius. Furthermore, for nanowires of radius smaller than 10 nm, new nonlocal resonances become visible,
but indeed only above the plasma frequency, in agreement with the general observation in Sec. 2 based on the
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Figure 1. Tangential component of the current density around the r = a boundary of an infinite cylinder with pure plasma
response as a function of the cylindrical angle θ. The values are scaled to the incident current density JI. The wire radius
is a = 2nm and frequency of the incident light is ω = 0.6524ωp.

generalized Boardman equations (4) and (5). The spacing between these resonances grows as the wire radius
decreases. These resonances are interpreted as confined standing-longitudinal-wave resonances. The longitudinal
waves are evanescent below the plasma frequency, but propagating above ωp. Whereas in local-response theories
external light does not interact with bulk plasmons, the hydrodynamic model does predict resonances of confined
longitudinal modes excited by light. On top of those, the ‘curl-free model’20, 21 also predicts new resonances due
to nonlocal response at visible frequencies, but those are spurious resonances that we showed have no counterpart
in the hydrodynamic model itself.12

The local-response model, the hydrodynamical Drude model, and the ‘curl-free’ model all have different
associated boundary conditions at metal-dielectric interfaces: respectively, two Maxwell boundary conditions,
those two plus a vanishing of the normal component of J, and those three plus a vanishing tangential components
of J. Thus in the curl-free model, a unique solution is not found by only specifying the normal component of
the current density when assuming stepwise equilibrium free-electron density profiles. Let us now consider the
current density on the boundary of the metal surface. Figure 1 shows the tangential component of the current
density when going around the illuminated nanowire, where θ = 0 corresponds to the side where the incident
plane wave originates from.24 All current densities are scaled to the ‘incident current density’, which is computed
in terms of the incident electric field EI as JI ≡ σ(ω)EI. The figure shows that the tangential current density at
the interface for the hydrodynamical Drude model essentially follows the sinusoidal behavior of the local model,
but with smaller amplitude, whereas the curl-free model has a forced vanishing tangential component of J.

We also compare the fields inside the nanowires for the three models. In Figure 2 we depict the current
components along the cut through the middle of the nanowire in the direction of the incident light.24 The
radial component of J vanishes identically for all three models: the incident light does not generate currents
perpendicular to the direction of its electric field. On the other hand, the tangential components of J show
remarkably different behavior. The local-response value is (almost) constant across the a = 2nm nanowire,
as expected for such a sub-wavelength structure. The hydrodynamic tangential component of J is also quite
flat inside the metal, with a value smaller than in the local theory, as we found in Fig. 1. The curve does bend
somewhat down near the interfaces, which is a hint of the Fermi wavelength as a new length scale besides the wire
radius and the optical wavelength. Quite different is the tangential current in the curl-free model. It vanishes
at the interface, dictated by an additional boundary condition, but inside the metal we see a resonant standing
wave pattern at the particular frequency chosen. There is no corresponding resonance in the hydrodynamical
model. Thus the resonance obtained in the curl-free model is unphysical, and Fig. 2 illustrates its limited use.
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Figure 2. Radial component Jr and tangential component Jθ of the current density J in the nanowire along the horizontal
midline (θ = 0) as a function of the radial position r inside the cylinder for the local Drude, the hydrodynamic and the
curl-free models. Interband transitions are neglected. The radius is a = 2nm and the frequency ω = 0.6503ωp.

4. NUMERICAL RESULTS FOR NANOWIRE DIMERS

We also implemented the hydrodynamic Drude model numerically, extending the capabilities of COMSOL as
a Maxwell solver for nonlocal response.15 This allows us to calculate solutions to the hydrodynamic model for
arbitrarily shaped nanoplasmonic nanowires. For details about the implementation we also refer to our Ref. 21,
although it discusses implementing the problematic curl-free model rather than the linearized hydrodynamic
model. Information about numerical convergence can be found in Ref. 15. Important difference between simu-
lating local-response models and the nonlocal hydrodynamic model is that the size of the numerical grid should
be small compared to the smallest length scale in the problem. For local response this is typically the size of the
plasmonic nanostructure, while for nonlocal response problems the smallest length scale is typically the Fermi
wavelength, of order 1 nm. Numerical calculations for the nonlocal model are therefore usually computationally
heavier. We can write the coupled wave equations as a single partial integro-differential equation in terms of the
electric field alone. This would show that the response is nonlocal indeed, but as a numerical method it is not
efficient. So we rather solve the coupled differential equations for E and J.

Figure 3 shows the spatial profile of the field enhancement of a cylindrical dimer, both for local and for
nonlocal response. Although there are no large differences, the nonlocal response gives a somewhat broader
field distribution with lower amplitude. Figure 4 shows the frequency dependence of the field enhancement in
between the dimers, again for local and for nonlocal response. Clearly, the field enhancement peaks are generally
lower for nonlocal response, and shifted to the blue. At a fixed frequency, the nonlocal field enhancement may
exceed or be equal to the value for local response. In agreement with our theoretical analysis, we observe no
new resonances below the plasma frequency (at 8.9 eV for Au and Ag) in our numerical investigations, but
nevertheless the differences between local and nonlocal response can be considerable for closely spaced dimers,
even when the differences would be small for the individual wires when isolated.

5. CONCLUSIONS

Nonlocal response becomes noticeable in metals with nanometer-sized features. Our analytical work on the
hydrodynamical model agrees quantitatively with our versatile numerical implementation in COMSOL. New
resonances due to nonlocal response are predicted to appear above the plasma frequency only. In the visible
spectrum, hybridization resonances of plasmonic dimers are blueshifted and appear weaker in the hydrodynamic
Drude model.
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Figure 3. Norm of the electric field in [V/m] for a cylindrical dimer with radii of 25 nm and distance 1 nm, at 3.684 eV.
The left panel shows the field distribution for local response, the right panel for the hydrodynamic Drude model.
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Figure 4. Averaged field enhancement 〈γ〉 as a function of frequency, in between two cylindrical dimers of radii 25 nm
at a distance of 1 nm, for local response and for the hydrodynamical Drude model. The average is taken on the interval
connecting the nearest points on the cylinders.
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